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This part of the study continues presenting fundamentals of the generalized mode-matching
technique designed for analyzing the waveguide mode scattering. Specifically, the problem is
considered of analytically estimating the rate of convergence of the projection approximations 
to the operator Fresnel formulas the unconditional convergence of which has been proven 
earlier. By the way of example of a canonical scalar problem of wave diffraction by a step in a 
rectangular waveguide the derivation of the approximation error of the wave reflection and 
transmission operators is presented. It is shown that the formulated problem can be solved 
through considering the strong P-convergence of the projection representation of the amplitude 
scattering operator. As a result, an analytical estimate has been first obtained for the rate of 
convergence of the scattering operator approximations obtained using the truncation method 
for the operator Fresnel formulas. The found regularities are validated through numerical 
calculations. The obtained results make it possible to determine the computational efficiency of 
the generalized mode-matching technique. 
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1. INTRODUCTION 

In the previous parts [1-3] of the study a theory of the generalized mode-matching 
technique has been developed on the basis of a new formulation of the diffraction 
problem for the waveguide modes. The new approach has allowed to i) rigorously 
prove the existence, uniqueness and stability of the solutions of the matrix-operator 
equations of the mode-matching technique for two classes of the electrodynamic 
analysis problems; ii) clarify that the correctness of the matrix model is a direct 
consequence of the energy conservation law; iii) prove the unconditional convergence 
of the projection approximations of the truncation technique to the true scattering 
operators, and iv) analytically estimate the condition number of the infinite and 
truncated matrices of the resultant model. 

In this part of the study we consider a practically important problem of a priori 
estimating the quantitative parameters of convergence of the truncation technique 
approximations which was a formidable task within the standard mode-matching 
technique. Making use of the matrix operator technique, an analytical estimate is 
derived for the convergence rate of the approximations for the wave reflection R  and 
transmission T  operators using an example of the sane canonical scalar problem of 

diffraction of the  0 1m mLM 
  and  1 0m mLE 

  modes by a leap of the transverse cross-
section of a rectangular waveguide which has been considered earlier in paper [1]. 

In the course of derivation of this estimate we will use the basic conceptions, terms 
and notation of the previous parts [1-3] of the study, and also the following definition 
of the order of approximation of the matrix operator (see, for example, reference [4]). 

For a given infinitesimally small numerical sequence  
1N N

N 



 , with 0  , the 

sequence of projection approximations  R


 is P-convergent to the matrix operator 

:R 2 2   with the rate N , provided that 
 

  const Nh
 b P RP - R


.                   (1) 

 
 

At that the order of approximation of the operator R  on the vector b  is equal to  . In 
the inequality Eq. (1) P  is a specified orthoprojector, while the norm is calculated in 
the space 2h  P . 

In the given part of study such approximations of the matrix operator appear which 
contain adjoint orthoprojectors P  and  Q I P    PQ QP 0  alternating 
components of this operator in a certain order. This generalization of the standard 
reduction of the matrix operator will be regarded as a projection representation of the 
given operator even in the case where such an approximation is difficult to be attached 
with a direct physical meaning. 
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2. INEXACTNESS OF THE PROJECTION APPROXIMATIONS OF THE 
SCATTERING OPERATORS 

The matrix model of the generalized mode-matching technique for the class of the 
problems of diffraction by a step discontinuity in a waveguide takes the form of the 
Fresnel formulas for the scattering operators [1]. In the case of a step in waveguide 
these formulas are as follows 
 

 

0 0

0 0

1 0

0

, ,
1

.
2

2 , 3,

T
p

p p T
p

pq
p T

p

p q


                
        

   

D I D D
R D

D I D D

D
T D I

D

       (2) 

 
Here pR  represents (up to a sign) the operator of reflection in arm p, pqT  is 
essentially the operator of wave transmission from arm p into arm q, and the basic 
operator of the problem 0D  is defined by the scalar product of transverse 
eigenfunctions of two partial domains and propagation constants of the waveguide 
modes [1]. 

It makes sense for our purposes to write the formulas Eq. (2) in terms of the pair of 
the following “amplitude operators of scattering” 

 

  1
, ,

,,

p p
p p

p
p p pp

p

         
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A D I B A I
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       (3) 

 
to obtain 
 

0

0

2 2 ,

1
2 , .

2

p p p

pq
p T p

   


        
    

R I A B I

D
T A

D

        (4) 

 
The problem operator Re 0p D  is accretive. Whence it follows that the 

“amplitude operators of scattering” Eq. (3) are accretive contractions, 
†Re 0p p p A A A  and †Re 0p p p B B B  [1]. 

To construct projection approximations to the scattering operators Eq. (4) we will 
use the infinite-dimensional orthoprojectors [2] 
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( )

(0)1
, ,

K
K

K mn mp pn K K
p

P  


      
  

P Q I P      (5) 

 
where ,K M N  denotes the number of modes considered in two semi-infinite 
waveguides and mn  stands for the Kronecker delta. Next is supposed that the field in 
waveguide p, 1,2p  , is reduced to a sum of M  modes, while N  modes are 
considered in the adjacent region. 

The projection approximations under consideration, 
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represent extensions of the finite-dimensional approximations pR  and pqT  [2] to 
infinite-dimensional matrices using zeroes as shown symbolically in the expressions 
Eq. (6) with the use of the block matrices. The notation used here is as follows 
 

  1 1 1

0 0
0 0

0 0

, ,

, 1
, .

2,

p p p p p p

T
M N

p T
N M

p

     

              
   

A D I A A A A I

D D P P
D D D

P PD D

    

 
 

 
     (7) 

 
It has been found in paper [2] that the strong P-convergence of the projection 

approximations Eq. (6) to the true operators of scattering Eq. (4) is determined by the 
strong P-convergence of the difference of the known operators ( )

,
p

M p p M N P D D Λ


 to 
the null operator. For the problem under consideration this difference can be 
represented in the following form 

 
0( ) 0

,
0 0

.
T

p
M p M M N MM N T

           
      

D DΛ P D Q P Q P
D D

      (8) 

 
To investigate the P-convergence of the scattering operators, we produce the 

differences 
 

( )
,2 ;p

M p M p p p MM N P R P R A Λ A P


       (9) 
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( )
, .ppq pq pq

M N p NM N  P TP T A Λ TP


    (10) 
 

Then with account of the properties 1p A  and 2pq T  [5] the equalities 

Eq. (9) and (10) yield the estimate 
 

 
  1 2 ,

M p M p
M Npq pq

M N

   
 

b P R P R
a Q a Q

b P TP T



                 (11) 

 
where 1 2 2, a a   with 2 b   [2]. 

So, the strong P-convergence of the projection approximations Eq. (6) with any 
values of the ratio /M N  is a corollary fact of the strong convergence of the 
orthoprojector KQ , with NMK , , to the null operator in the space 2 . The presence 
of two terms in the expression Eq. (11) implies the necessity of simultaneous and 
independent fulfillment of the limiting passage conditions M   and N  . 

It will be shown below that the convergence rate of the approximations Eq. (6) can 
be estimated using properties of the operator 

 

( ) 0
,

0
2 ,

T
p pq

p M N MM N
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  

DB Q TQ P
D
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which also can be represented in the following equivalent form 
 

( ) 0 0
,

0 0
.

T T
p pq

N MM N
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        

D DT P P
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     (13) 

 
It is clear from the last expression that this operator is essentially a projection 

representation of the amplitude operator 2 pB , 1p B . 

It follows from the expansion of the operator ( )
,

p
M N  in adjoint orthoprojectors 

Eq. (12) that the Pythagorean theorem holds for an arbitrary vector 2b  , viz. 
 

2
2 2( ) 0

,
0

2 .
T

p pq
p M N MM N

     
  

Db bB Q b TQ P
D

   (14) 

 
Let the field source vector b  is such that 1 p Md bB Q  and 2

pq
Nd b TQ , with 

1 2 2, d d   being essentially the coefficient vectors of the field expansion within the 
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aperture of the irregularity under consideration. The power law of decreasing these 
coefficients with great values of the indices is familiar [6]. It is determined by the 
geometry of the sharp edge of the step and is independent of the scattered wave. In the 
case under consideration of a perfectly conducting (metal) rectangular wedge we have 

 
                                        (1) (2),m md d   7 / 6 , 1O m m  . 

 
Now, making use of the asymptotic estimation for the residual series 
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the equality Eq. (14) can be rewrite in the form 
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Proof. Making use of the expression Eq. (8) we obtain 
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Here we have introduced the new projection representations for the scattering 
operators after the formulas 
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Next, it should be noted that the approximations pR


 and pq T


 are strongly  

P-convergent to the appropriate true operators of scattering. Indeed, the differences 
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are quite similar to the equalities Eqs. (9) and (10) and hence, the estimates like 
Eq. (11) are applicable to these. Isolating these new projection representations of the 
scattering operators from the relations Eq. (20) and eliminating these from the equality 
Eq. (18), we arrive at the identity 
 

 ( ) ( ) ( )
, , ,2 ,p p p

p M pM N M N M N A Λ P A Λ
 

      (21) 
 

which can also be written in the form of Eq. (17). 
Theorem. The projection approximations Eq. (6) are strongly P- convergent to the 

true scattering operators Eq. (4) with the rate 2 / 3 2 / 3,M N   with , 1M N   for all the 
field source vectors 2b  . 

Proof. Substitution of the identity Eq. (17) into the equality Eq. (9) yields the estimate 
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The second factor in the right-hand part of this expression represents a bounded 

quantity and its dependence on the values M  and N  can be disregarded. Next, for any 
finite-dimensional vector MbP , with 2b   we can use the result Eq. (16). Then on 
the condition , 1M N   we obtain the inequality 
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So, the order of approximation of the reflection operator is equal to 2/3  . On 
the same assumption the expression Eq. (10) yields the same estimate for the 
convergence rate of the wave transmission operator pqT. 

Presented in Fig. 1 below are the typical results of computer verification of the 
obtained analytical estimate of the approximation order of the reflection operator 1R  
for the problem on a step within the H-plane. The numerical data are presented such 
that the value   to correspond to the slope ratio k  of the straight-line equation. The 
computational results correspond to the values / 1.3a   , / 0.5b a  ,  / 2;1/ 2M N   

and a specified field source vector  1 1m m 
b . 
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In the course of the computations the true reflection operator 1R  was assumed to 
be represented by a finite 0 0M M  matrix derived from the reduced model Eq. (41) 
(see paper [1]) for the values M0 = 4 000 and N0 = 2 000 0 0( / / )M N a b . In this 
condition the value of the condition number of the reversible 6000  6000 block matrix 
did not exceed the value 1.75. 

As can be seen from the Figure, with relatively small values of the quantity N  the 
deviations of the computed values from the interpolating straight line are somewhat 
greater for line 2 (M / N = 1/2) than for the ratio M / N = 2 which meets the Mittra rule 
(line 1). 

The slope ratio of curve 1 in the Figure is equal to k   – 0.638, while that of curve 
2 is k   –  0.675. 

 

 
 

FIG. 1: Dependence of the reflection operator approximation error on the number of the 
considered waveguide modes. The circles correspond to the computer calculations, the dashed 
line represents the interpolating straight line and the solid line corresponds to the analytical 
estimation 

 
Thus, the value of the relative error of the predicted value 2/3   for the graphs 

presented in the Figure does not exceed 4.5 %. 

 
3. CONCLUSIONS 

By way of example of the canonical problem on a step in a rectangular waveguide an 
analytical estimate has been first found for the rate of the strong P-convergence of the 
scattering operator approximations obtained through reduction of the operator Fresnel 
formulas. 
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As expected, the rate of convergence of the projection approximations under 
consideration is determined by the degree of decreasing the coefficients  mdd  of 
the mode expansion of the field within the waveguide irregularity aperture. It has been 
shown that the approximation order for the wave reflection R  and transmission T  
operators within the problem under consideration is close to the value 2/3   with 

 7 / 6
md O m , 1m  , for all the field source vectors 2b  . 

The considered operator Fresnel formulas are of a universal character for the class 
of mode diffraction problems by step discontinuities in waveguides [1]. For this reason 
the suggested method of investigation and the obtained results would be useful for a 
rigorous analysis of discontinuities of the kind. 
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