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ABSTRACT: New basic properties of the reflection operator are analyzed for the 
problem of wave diffraction by abrupt discontinuities. A generalized (operator) form of 
the power conservation statement has been used to evaluate the norm of this operator 
and investigate the localization and the structure of its spectrum. The results obtained are 
useful for justifying matrix models of the considered class of diffraction problems, as 
well as for developing new methods of electrodynamic analysis of waveguiding and 
periodic structures. 

 
INTRODUCTION 

Solutions of wave diffraction problems involve at least two mutually 
complementary aspects. The first, or quantitative one is associated with a search 
for satisfactory numerical approximations to the scattering operators, thus 
representing a distinctly applied interest. As a result, methods of construction 
and numerical implementation of mathematical models of wave diffraction are 
widely presented in numerous publications. 

The other aspect concerns determination of fundamental properties of the 
scattering operators. This is of decisive importance for validating the employed 
mathematical model, suggesting a rigorous analytical proof of convergence of 
the approximations to the true solution, investigating the relative convergence 
effect, etc. An adequate mathematical formalism in this case is the theory of 
operators in the Hilbert and Krein spaces. This aspect of the solution procedure 
has attracted only rather recently the attention of researchers, and remains poorly 
illuminated in the scientific literature. 
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In papers [1-4] the Riemann-Hilbert problem technique and the method of 
spectral operators were applied to systematically investigate the properties of 
reflection and transmission operators for electromagnetic wave diffraction in the 
presence of periodic structures and waveguide discontinuities. Symmetry 
relations and spectral characteristics of the scattering operators were analyzed. 
In particular, paper [4] generalized the result of Mittra and Lee [5] concerning 
localization of the point spectrum of the reflection operator R  inside of a unit 
disk. As was shown in paper [6], by way of example of a specific diffraction 
problem, knowledge of spectral properties of the reflection operator is sufficient 
for justifying the correctness of the matrix model constructed with the use of the 
mode-matching technique. 

The present paper is aimed at analyzing new basic properties of the matrix-
form reflection operator which follow from the fundamental laws of 
electrodynamics and are common for a wide class of diffraction problems 
concerning waveguide modes or spatial harmonics. To that end, the following 
approach is used in the paper. 

That the entire spectrum of the reflection operator lies strictly inside the unit 
disk allows reducing the investigation of the operator R  to an analysis of its 
Cayley transform. This replacement is justifiable since the power conservation 
law takes an essentially simpler form in terms of the Cayley transform, and 
hence the basic properties of the operator can be established much easier. The 
principal result of the paper follows immediately from the modified form of the 
power conservation statement; namely, the Cayley transform of the reflection 
operator is an accretive operator, and hence 1≤R . Note that the respective 
theorem is proved in this paper with the use of geometrical properties of the 
Hilbert space, however the result sought for can also be obtained by applying the 
Hahn-Banach theorem. 

The developed method is discussed below for the case of scalar problems of 
mode diffraction by an abrupt junction of two waveguiding channels (specific 
examples of this geometry are presented, e.g. in papers [1-6]). However, it 
should be noted that the suggested technique is also directly applicable to 
analyzing complex microwave devices with an arbitrary number of ports. 
 
 
OPERATOR FORM OF THE POWER CONSERVATION LAW 

Let sources α  and β  of a time harmonic field be present each in one of the two 
waveguiding channels through which M  and N  modes can propagate, 
respectively. The excitation of an arbitrary electromagnetic field is described by 
infinite-dimensional vectors α b  and β b  with complex-valued components 
which have the physical meaning of specified amplitudes of a complete set of 
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modes scattered by the abrupt discontinuity under analysis. These amplitudes 
will be normalized so as to meet the condition of a bounded energy in the 
incident field in the form 2,α β ∈b b . 

Let us introduce the projection operator onto the propagating waves, 
 

( ) ( )1,...,1,0,... , ,
K

K
K mn mq qn

q K

p diag K M Nδ δ
∞

⎧ ⎫⎧ ⎫ ⎪ ⎪≡ = = =⎨ ⎬ ⎨ ⎬
⎪ ⎪⎩ ⎭ ⎩ ⎭

∑P        (1) 

 
which will select amplitudes of all the propagating modes in the form of the 
vectors ( ) ( )

K
α β α β

− ≡b P b . These form a K − dimensional subspace 
( ){ } 2h α β

− −≡ ⊂b  ( mnδ  in Eq. (1) stands for the Kronecker delta symbol). 

The remaining part of the field excitation vector, 
( ) ( ) ( ) ( )

K
α β α β α β α β

+ −= − =b b b Q b , with K K= −Q I P , evidently, involves 
amplitudes of evanescent modes. All these vectors form an infinite-dimensional 
subspace ( ){ } 2h α β

+ +≡ ⊂b . Such natural (from the physical standpoint) 

splitting of the initial Hilbert space gives rise to the Pontrjagin space, 
,K h h h h− + − +Π ≡ ∪ ∩ =∅ , characterized by the canonical symmetry, 

( ), .K K K K M N= − =J Q P  
In the further analysis a cardinal role belongs to the unitary operator which 

is defined by the equality 
 

( ),K K Ki K M N= − =U Q P              (2) 
 

and is closely related to the canonical symmetry according to the formula 
2 2
K K K

−= =U U J . As follows directly from the definition Eq. (2), the numerical 
range of this operator lies completely within the fourth quadrant of the complex 
plane. Using the terminology of paper [7], this operator is both accretive and 
accumulative simultaneously (in what follows, we will use the term “accretive-
accumulative operator”). 

As was shown in papers [6,8], by applying the matrix form of the reflection, 
( )

2 2:α β →R , and transmission, ( )
2 2:α β →T , operators the power 

conservation law for the considered class of discontinuities can be brought to the 
following generalized form, 

 
( )( ) ( )

( )( ) ( )
( )

( )† †
M N N M

α β α β α β α β+ − =I R U I R TU T ,   (3) 

 
where the dagger “†” denotes Hermitian conjugation. Note that application of 
the commonly known Lorentz lemma to the reciprocal waveguiding structure 



I.V. PETRUSENKO AND YU.K. SIRENKO 

 1704

under analysis yields properties of the transposed matrix operators as follows 
( ) ( ) ( ) ( ),T Tα β α β α β β α= =R R T T  (see, for example, papers [1,2]). 

For further consideration it is sufficient to restrict ourselves to analyzing the 
scattering operators associated only with a single source. For this reason in what 
follows we will omit the superscripts designating these operators. 

 
 

SPECTRUM OF THE REFLECTION OPERATOR AND ITS 
CAYLEY TRANSFORM 

The equality 
 

( )† † †1 1Im
2 2M M Ni

≡ − = − −R R R P VP V TP T ,   (4) 

 
represents the operator form of the power conservation law different from 
Eq.(3). Its validity can be checked by straight-forwardly substituting the 
expression for the newly introduced operator 
 

( )1
2 M= −V I R J   

 
and accounting for the fundamental properties of the canonical symmetry. Note 
that the relation Eq. (4) has the meaning of the measure of nonself-adjointness of 
the reflection operator. According to the definition Eq. (1) the orthogonal 
projector ( )M NP  represents an operator of finite rank. Hence, such is also the 

operator Im R  which follows from Eq. (4). Thus, the reflection operator is a 
nonself-adjoint one with a compact imaginary part (i.e, a quasi-Hermitian 
operator [9]) for the entire class of the diffraction problems under consideration. 

Proceeding from this fact we can review some known results as for spectral 
properties of the reflection operator [4,5]. 

Theorem 1. The spectrum ( )σ R  of the reflection operator lies completely 
inside a unit disk, with every non-real point of the spectrum being an eigenvalue 
of finite multiplicity, while the remaining parts of the spectrum may belong to 
the real axis only. 

Proof. The properties of individual structural parts of the spectrum follows 
directly from the general theory of quasi-Hermitian operators [10]. Furthemore, 
let a row-vector , 1=b b , be known for any given 0ε > , such that the 

inequality ( )λ ε− ≤b R  holds (in the case of eigenvectors of the reflection 
operator we set 0ε =  and replace the inequality by an equality). By composing 
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the left- and right-hand products of Eq. (3) with this vector, we will bring the 
left-hand part of the obtained equality to the form 

 

( ) ( ) ( ) ( )

( )( ) ( )

† †

†1 1 .

M

M

λ λ λ λ

λ λ ε

∗ ∗

∗

⎡ ⎤⎡ + + − ⎤ − − − =⎣ ⎦ ⎣ ⎦

= + − +Ο

b I R U I R b

bU b

 

 

By multiplying the total result by the number ( )†† † †
M M=bU b bU b , we get 

 

( )( ) ( ) ( )( )2† † † † †1 1 M N M
∗+ − + Ο =bU b bTU T b bU bλ λ ε . 

 
Therefore, with 0ε→  we have 
 

( )( ){ } ( )( ){ }† † † †Re 1 1 Re N Msign sign∗+ − = bTU T b bU bλ λ . 

 
Taking into account the numerical range localization of the cramped unitary 

operators NU  and †
MU , we arrive at the sought-for inequality 21 0− >λ . 

Corollary 1. The reflection operator possesses a Cayley transform which in 
Weyl’s notation takes the form 

 

( )W +
≡

−
I RR
I R

.   

 
In virtue of the familiar properties of this transformation, the Cayley 

transform of the reflection operator, ( )W=D R , is a quasi-Hermitian operator as 
well, and besides T =D D . 

Corollary 2. The spectrum, ( )Dσ , of the Cayley transform lies entirely 
within the right-hand half-plane, with every non-real point of the spectrum being 
an eigenvalue of finite multiplicity, while the remaining parts of the spectrum 
may belong to the real axis only. 

Proof. The spectrum mapping theorem, 
 

( ) ( )( ) ( )( )W W= =D R Rσ σ σ ,    (5) 
 

suggests that if ( )∈ Dμ σ , then Re 0>μ . The structure of the spectrum ( )σ D  
is determined both by the theorem Eq. (5) and the quasi-Hermiticity property of 
the Cayley transform. 
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CONTRACTION PROPERTY OF THE REFLECTION 
OPERATOR 

Let us define the characteristic operator by the formula 
 

( ) ( )†
M M≡ + −G I R U I R .     (6) 

 
Then the power conservation law Eq. (3) (in the form †

M N=G TU T ) implies 
that the introduced operator is an accretive-accumulative one. 

Taking into account the spectral properties of the operator D , let us 
represent the characteristic operator Eq. (6) through the Cayley transform, viz. 

 

( ) ( ) 11 †1
4 M M

−−= + +G D I DU D I .  

 
As follows from this relation, the operator ˆ

M≡D DU  which is metrically 
equal to the Cayley transform occurs accretive-accumulative as well. 

Now we are in possession of all the necessary data to prove the basic result 
of this paper. In the course of the proof two easily verified statements (see, for 
example, [11]) will be used. 

Lemma. Let any number of the form iλ α β= − +  with 0α >  and 

β−∞ < < ∞  belong to the resolvent set of the operator A (i.e., ( )λ ρ∈ A ), 

then the inequality ( )†1Re 0
2

≡ + ≥A A A  holds if and only if 

 
( ) 2,− ≥ ∀ ∈A u u uλ α   

 
or, which is the same, ( ) 1 1− −− ≤A λ α . 

Corollary. Let, for the same 0α >  and β−∞ < < ∞ , the number 

i i− = +λ β α  belong to the set ( )Bρ , then Im 0≤B  is valid if only if the 
inequality 

 
( ) 2,i+ ≥ ∀ ∈B u u uλ α   

 
holds or, which is equivalent, ( ) 1 1i − −+ ≤B λ α . 

The main result of this paper is the result of the following statement. 
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Theorem 2. The Cayley transform D  is an accretive operator. 
Proof. As was shown, the operator D̂  is an accretive and accumulative 

operator at a time. Then, according to the above lemma and the corollary 
thereof, the following estimates are valid, 

 

( )
( ) 2

ˆ
,

ˆ i

λ α

λ α

+ +

±

− −

⎫− ≥ ⎪ ∀ ∈⎬
⎪+ ≥
⎭

D b b
b

D b b
  

where ( )ˆ , 0iλ α β ρ α= − + ∈ >D ; M+ =b Q b , M− =b P b . These two 

inequalities together yield 
 

( ) ( )2 2 22
2

ˆ ˆ ,iλ λ α+ −− + + ≥ ∀ ∈D b D b b b .   (7) 

 
Let us transform the left part of (7) according to the parallelogram rule to the 

form 
 

( ) ( ) ( ) ( )( )2 2 2 21ˆ ˆ
2 Miλ λ λ λ+ −− + + = − + −D b D b D d D J d , (8) 

 
where the notation M=d U b  has been introduced. 

Now, making use of the estimate 
 

( ) ( ) ( )2 2 2
2M− + − ≤ −D d D J d D uλ λ λ ,   (9) 

 
where ( ) ( ) ( ){ }max , M− = − −D u D d D J dλ λ λ , for the right-hand part of 

Eq. (8), we can obtain from the two inequalities Eqs. (7) and (9), with account of 
the relation Eq. (8), the following result 

 

( ) 2 22− ≥D u uλ α .  
 

It has been taken into account here that M= = =u d J d b . Hence, we arrive 
at 

 
( ) 2,− ≥ ∀ ∈D u u uλ α .  

 
Since ( ) , 0i= − + ∈ >Dλ α β ρ α , the repeated application of the lemma 

brings for the desired result, namely Re 0≥D . 
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Corollary. The reflection operator is a contraction, 1≤R , which is 
equivalent to that the operator D  is accretive in virtue of the relation 

 
( )

( )
( )
( )

1 1††

1† 1†

1 Re
4

− −

− −

⎧ ⎫ ⎧ ⎫+ +⎧ ⎫−⎪ ⎪ ⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬ ⎨ ⎬
−⎪ ⎪ +⎪ ⎪ ⎪ ⎪⎩ ⎭ +⎩ ⎭⎩ ⎭

D I D II RR
D

I R R D I D I
. 

 
The latter is valid since ( ) ( )†1 ,− ∉ D Dσ σ . 
 
 
CONCLUSIONS 

The power conservation law in its generalized form Eq. (3) determines 
fundamental properties of the operator of wave reflection from abrupt 
discontinuities in waveguiding structures (waveguide junctions, periodic 
structures with Floquet channels etc.). The method of analysis that has been 
proposed allows establishing the sought-for operator properties in the following 
sequence: 
(1) the reflection operator R  is a quasi-Hermitian one; 
(2) the entire spectrum ( )σ R  lies strictly inside a unit disk, and, because of 
quasi-Hermitian nature of R , all non-real points of the spectrum are 
eigenvalues of finite multiplicity; 
(3) the operator R  is a contraction. 

It can be found in the same way that ( ) ( )Im , Im 0K K ≤RJ J R . To do that, 

note that the spectrum ( )KDJσ  lies within the lower half-plane, while the 
product KDJ  is an accumulative operator. Then it is necessary to use the 
interrelation of the operators ( ) ( )Im , ImK KDJ J D  and ( ) ( )Im , ImK KRJ J R , 
which follow from the Cayley transformation. 

The established basic properties of the reflection operator and its Cayley 
transform will be useful for the rigorous justification of the computational 
electrodynamics methods based on modal analysis, and also for the development 
of new efficient algorithms of waveguide discontinuity analysis. 
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