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Дослiджується властивiсть компактностi слабкої збiжностi у змiнних просторах
Соболєва для послiдовностей вигляду

{
(An, un) ∈ L1(Ω;RN×N )×WAn(Ω; ΓD)

}
, де квад-

ратнi симетричнi матрицi A : Ω→ RN×N належать просторам Лебега L1(Ω,RN×N ), а їх
власнi числа можуть дорiвнювати нулю на пiдмножинах мiри ноль.

Ключовi слова: матрицi з виродженим спектром, ваговi простори Соболєва, син-
гулярнi мiри, збiжнiсть у змiнних просторах.

Исследуется свойство компактности слабой сходимости в переменных простран-
ствах Соболева для последовательностей вида

{
(An, un) ∈ L1(Ω;RN×N )×WAn(Ω; ΓD)

}
,

где квадратные симметричные матрицы A : Ω → RN×N принадлежат пространству
Лебега L1(Ω,RN×N ), а их собственные числа могут вырождаться в ноль на подмно-
жествах меры ноль.

Ключевые слова: матрицы с вырожденным спектром, весовые пространства Со-
болева, сингулярные меры, сходимость в переменных пространствах.

We study the compactness property of the weak convergence in variable Sobolev
spaces of the following sequences

{
(An, un) ∈ L1(Ω;RN×N )×WAn

(Ω; ΓD)
}
, where the squa-

red symmetric matrices A : Ω → RN×N belong to the Lebesgue space L1(Ω,RN×N ) and
their eigenvalues may vanish on subdomains of Ω with zero Lebesgue measure.

Key words: matrices with degenerate spectrum, weighted Sobolev space, singular
measures, convergence in variable spaces.

1. Introduction

The main object of our consideration in this paper is the class of squared symmetric
matrices A : Ω → RN×N for which some or all their eigenvalues

{
λA1 , . . . , λ

A
N

}
may

vanish on subdomains of Ω with zero Lebesgue measure. Because of this, we call these
matrices as matrices with degenerate spectrum. The second characteristic feature of
such matrices is the fact that their elements belong to the space of Lebesgue integrable
functions L1(Ω). We show that if each of matrices A : Ω → RN×N is associated with
some special Sobolev space WA(Ω; ΓD) then there is a natural way to introduce a
convergence concept for the sequence of the following type{

(An, un) ∈ L1(Ω;RN×N)×WAn(Ω; ΓD)
}
n∈N . (1.1)
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We discuss the main properties of such convergence and prove that if the sequence (1.1)
is bounded then under some additional conditions this sequence is relatively compact
with respect to the introduced convergence.

2. Notation and Preliminaries

Let Ω be a bounded open subset of RN (N ≥ 2) with Lipschitz boundary. We assume
that the boundary of Ω consists of two disjoint parts ∂Ω = ΓD∪ΓN . Let the sets ΓD and
ΓN have positive (N − 1)-dimensional measures. Let χE be the characteristic function
of a subset E ⊂ Ω, i.e. χE(x) = 1 if x ∈ E, and χE(x) = 0 if x 6∈ E.

Let C∞0 (RN ; ΓD) =
{
ϕ ∈ C∞0 (RN) : ϕ = 0 on ΓD

}
. We define the Banach space

W 1,1(Ω; ΓD) as the closure of C∞0 (RN ; ΓD) in the classical Sobolev space W 1,1(Ω). For
any subset E ⊂ Ω we denote by |E| its N -dimensional Lebesgue measure LN(E).

Symmetric matrices with degenerate eigenvalues. We denote by SN := R
N(N+1)

2 the
set of all symmetric matrices ~ξ = [ξij]

N
i,j=1, (ξij = ξji). We suppose that SN is endowed

with the euclidian scalar product ~ξ · ~η = tr(~ξ ~η) = ξijηij and with the corresponding
euclidian norm ‖~ξ‖SN = (ξ · ξ)1/2. Let

L1(Ω)
N(N+1)

2 = L1
(
Ω;SN

)
be the space of integrable functions whose values are symmetric matrices.

Let α ∈ R be a fixed positive value. Let ζad : Ω → [0, α] be a given function
satisfying the properties

ζad ∈ L1(Ω), ζ−1
ad ∈ L

1(Ω), ζ−1
ad 6∈ L

∞(Ω).

Let Ψ∗ be a nonempty compact subset of L1(Ω) such that for any ζ∗ ∈ Ψ∗ the following
conditions hold true

ζad(x) < ζ∗(x) a.e. in Ω, (2.1)
ζ∗ : Ω→ R1

+ is smooth function along the boundary ∂Ω, (2.2)
ζ∗ = α on ∂Ω. (2.3)

By Mβ
α(Ω) we denote the set of all matrices A(x) = [ai j(x) ] ∈ SN such that

A(x) ≤ β(x)I a. e. in Ω, (2.4)
∃ ζ∗ ∈ Ψ∗ s.t. ζ∗I ≤ A(x) a. e. in Ω. (2.5)

Here β ∈ L1(Ω) is a given function such that β(x) > 0 a.e. in Ω, I is the identity
matrix in RN×N , and (2.4)–(2.5) should be considered in the sense of quadratic forms.
Therefore, (2.4)–(2.5) imply the following inequalities:

if A ∈ L1(Ω;SN), then ‖A(x)‖L1(Ω;SN ) ≤ ‖β‖L1(Ω) < +∞, (2.6)
ζ∗(x)‖ξ‖2

RN ≤ (A(x)ξ, ξ)RN a. e. in Ω, ∀ ξ ∈ RN . (2.7)
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Remark 1. Since every measurable matrix-valued function A : Ω → SN can be
associated with the collection of its eigenvalues

{
λA1 , . . . , λ

A
N

}
, where each λAk = λAk (x)

is counted with its multiplicity, (2.5), in view of the properties of the class Ψ∗, means
that eigenvalues of matrices A ∈ Mβ

α(Ω) may vanish on subdomains of Ω with zero
Lebesgue measure. Because of this, these matrices are sometime referred to as matrices
with degenerate spectrum.

Weighted Sobolev Spaces. To each matrix A ∈Mβ
α(Ω) we can associate the weighted

Sobolev space
WA(Ω; ΓD) = W (Ω; ΓD;Adx),

which is the set of functions y ∈ W 1,1(Ω; ΓD) for which the norm

‖y‖A =
(∫

Ω

(
y2 + (∇y, A(x)∇y)RN

)
dx
)1/2

(2.8)

is finite. Note that due to the inequality (2.7) and estimates∫
Ω

|y| dx ≤
(∫

Ω

|y|2 dx
)1/2

|Ω|1/2 ≤ C‖y‖A, (2.9)∫
Ω

‖∇y‖RN dx ≤
(∫

Ω

‖∇y‖2
RN ζ∗ dx

)1/2(∫
Ω

ζ−1
∗ dx

)1/2

≤ C
(∫

Ω

(∇y, A(x)∇y)RN dx
)1/2

≤ C‖y‖A, (2.10)

the space WA(Ω; ΓD) is complete with respect to the norm ‖ · ‖A. It is clear that
WA(Ω; ΓD) is a Hilbert space. If the eigenvalues

{
λA1 , . . . , λ

A
N

}
of A : Ω → SN are

bounded between two positive constants, then it is easy to verify that WA(Ω; ΓD) =
W 1,2(Ω; ΓD). However, for a “typical” weight-matrix A ∈ Mβ

α(Ω) the space of smooth
functions C∞0 (RN ; ΓD) is not dense in WA(Ω; ΓD). Hence the identity WA(Ω; ΓD) =
W 1,2(Ω; ΓD) is not always valid (for the corresponding examples in the case when
A(x) = ρ(x)I, we refer to [1, 4]).

Weak Compactness Criterion in L1(Ω;SN). Throughout the paper we will use the
concept of weak and strong convergence in L1(Ω;SN). Let {Aε}ε>0 be a bounded
sequence of matrices in L1(Ω;SN). We recall that {Aε}ε>0 is called equi-integrable
on Ω, if for any δ > 0 there is a τ = τ(δ) such that

∫
S
‖Aε‖SN dx < δ for every

measurable subset S ⊂ Ω of Lebesgue measure |S| < τ . Then the following assertions
are equivalent for L1(Ω;SN)-bounded sequences:

(i) a sequence {Ak}k∈N is weakly compact in L1(Ω;SN);

(ii) the sequence {Ak}k∈N is equi-integrable.

Theorem 1 (Lebesgue’s Theorem). If a sequence {Ak}k∈N ⊂ L1(Ω;SN) is equi-integ-
rable and Ak → A almost everywhere in Ω then Ak → A in L1(Ω;SN).
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3. SN -Valued Radon Measures and Weak Convergence in
Variable L2-Spaces

By a nonnegative Radon measure on Ω we mean a nonnegative Borel measure
which is finite on every compact subset of Ω. The space of all nonnegative Radon
measures on Ω will be denoted by M+(Ω). According to the Riesz theory, each Radon
measure µ ∈ M+(Ω) can be interpreted as element of the dual of the space C0(Ω) of
all continuous functions with compact support. Let M(Ω;SN) denote the space of all
SN -valued Borel measures. Then

~µ = [µij] ∈M(Ω;SN) ⇔ µij ∈ C ′0(Ω), i = 1, . . . , N.

Let ~µ and the sequence {~µk}k∈N be matrix-valued Radon measures. We say that
{~µk}k∈N weakly-∗ converges to ~µ in M(Ω;SN) if

lim
k→∞

∫
Ω

~ϕ · d~µk =

∫
Ω

~ϕ · d~µ ∀ ~ϕ ∈ C0(Ω;SN).

A typical example of such measures is

d~µk = Ak(x) dx, d~µ = A(x) dx, (3.1)
where Ak, A ∈Mβ

α(Ω) ∩ L1(Ω;SN) and Ak ⇀ A in L1(Ω;SN), (3.2)

or Ak, A ∈Mβ
α(Ω) ∩ L∞(Ω;SN) and Ak

∗
⇀ A in L∞(Ω;SN). (3.3)

As we will see later (see Theorem 2), the sets Mβ
α(Ω)∩L1(Ω;SN) are sequentially closed

with respect to strong convergence in L1(Ω;SN).
In this section we suppose that the measures ~µ and {~µk}k∈N are defined by (3.1) and

~µk
∗
⇀ ~µ inM(Ω;SN). Further, we will use L2(Ω, A dx)N to denote the set of measurable

vector-valued functions f ∈ RN on Ω such that

‖f‖L2(Ω,A dx)N =
(∫

Ω

(f , A(x)f)RN dx
)1/2

< +∞.

As follows from estimate (2.10) any vector-valued function of L2(Ω, A dx)N is Lebesgue
integrable on Ω.

We say that a sequence
{
vk ∈ L2(Ω, Ak dx)N

}
k∈N is bounded if

lim sup
k→∞

∫
Ω

(vk, Ak(x)vk)RN dx < +∞.

Definition 1. A bounded sequence
{
vk ∈ L2(Ω, Ak dx)N

}
k∈N is weakly convergent to

a function v ∈ L2(Ω, A dx) in the variable space L2(Ω, Ak dx)N if

lim
k→∞

∫
Ω

(~ϕ,Ak(x)vk)RN dx =

∫
Ω

(~ϕ,A(x)v)RN dx ∀ ~ϕ ∈ C∞0 (Ω)N . (3.4)
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The main property concerning the weak convergence in Lp(Ω, dµε) can be expressed
as follows (see for comparison [5]):

Proposition 1. If a sequence
{
vk ∈ L2(Ω, Ak dx)N

}
k∈N is bounded, then it is compact

in the sense of weak convergence in L2(Ω, Ak dx)N .

Proof. Having set Lk(~ϕ) =

∫
Ω

(~ϕ,Ak(x)vk)RN dx ∀ ~ϕ ∈ C∞0 (Ω)N and making use the

Hölder inequality, we get

|Lk(~ϕ)| ≤
(∫

Ω

|A1/2
k vk|2RN dx

)1/2(∫
Ω

|A1/2
k ~ϕ|2RN dx

)1/2

=

(∫
Ω

(vk, Akvk)RN dx

)1/2(∫
Ω

(~ϕ,Ak~ϕ)RN dx

)1/2

≤ C

(∫
Ω

(~ϕ,Ak~ϕ)RN dx

)1/2

≤ C

(∫
Ω

β(x)‖~ϕ‖2
RN dx

)1/2

≤ C‖~ϕ‖C(Ω;RN )‖β‖
1/2

L1(Ω) ∀ k ∈ N. (3.5)

Since the set C∞0 (Ω)N is separable with respect to the norm ‖·‖C(Ω;RN ) and {Lk(~ϕ)}k∈N
is a uniformly bounded sequence of linear functionals, it follows that there exists a
subsequence of positive numbers {kj}∞j=1 for which the limit (in the sense of point-by-
point convergence)

lim
j→∞

Lkj(~ϕ) = L(~ϕ) (3.6)

is well defined for every ~ϕ ∈ C∞0 (Ω)N . As a result, using (3.2), we have

|L(~ϕ)| ≤ C lim
k→∞

(∫
Ω

(~ϕ,Ak~ϕ)RN dx

)1/2

= C

(∫
Ω

(~ϕ,A~ϕ)RN dx

)1/2

.

Hence, L(~ϕ) is a continuous functional on L2(Ω, A dx)N admitting following represen-

tation L(ϕ) =

∫
Ω

(~ϕ,A(x)v)RN dx, where v is some element of L2(Ω, A dx)N . Thus,

taking into account Definition 1, v can be taken as the weak limit of{
vk ∈ L2(Ω, Ak dx)N

}
k∈N .

The next property of weak convergence in L2(Ω, Ak dx)N shows that the variable
L2-norm is lower semicontinuous with respect to the weak convergence.

Proposition 2. If the sequence
{
vk ∈ L2(Ω, Ak dx)N

}
k∈N converges weakly to v ∈

L2(Ω, A dx)N , then

lim inf
k→∞

∫
Ω

(vk, Ak(x)vk)RN dx ≥
∫

Ω

(v, A(x)v)RN dx. (3.7)

5
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Proof. Indeed, we have
1

2

∫
Ω

(vk, Akvk)RN dx =
1

2

∫
Ω

|A1/2
k vk|2RN dx ≥

∫
Ω

(~ϕ,Akvk)RN dx

−1

2

∫
Ω

(~ϕ,Ak~ϕ)RN dx ∀~ϕ ∈ C∞0 (Ω)N ,

1

2
lim inf
k→∞

∫
Ω

(vk, Akvk)RN dx ≥
∫

Ω

(~ϕ,Av)RN dx− 1

2

∫
Ω

(~ϕ,A~ϕ)RN dx.

Since the last inequality is valid for all ~ϕ ∈ C∞0 (Ω)N and C∞0 (Ω)N is a dense subset of
L2(Ω, A dx)N , it holds also true for ~ϕ ∈ L2(Ω, A dx)N . So, taking ~ϕ = v, we arrive at
(3.7).
Definition 2. A sequence

{
vk ∈ L2(Ω, Ak dx)N

}
k∈N is said to be strongly convergent

to a function v ∈ L2(Ω, A dx)N if

lim
k→∞

∫
Ω

(bk, Ak(x)vk)RN dx =

∫
Ω

(b, A(x)v)RN dx (3.8)

whenever bk ⇀ b in L2(Ω, Ak dx)N as k →∞.
As a result, we come to the following property of strong convergence in the variable

L2(Ω, Ak dx)N -spaces.
Proposition 3. Weak convergence of a sequence

{
vk ∈ L2(Ω, Ak dx)N

}
k∈N to v ∈

L2(Ω, A dx)N and

lim
k→∞

∫
Ω

(vk, Ak(x)vk)RN dx =

∫
Ω

(v, A(x)v)RN dx (3.9)

are equivalent to strong convergence of {vk}k∈N in L2(Ω, Ak dx)N to v ∈ L2(Ω, A dx)N .
Proof. It is easy to verify that strong convergence implies weak convergence and (3.9).
Indeed, we use bk = ~ϕ ∈ C∞0 (Ω)N in (3.8) and then substitute bk = vk.

In view of Proposition 1, we may assume that there exist two values ν1 and ν2 such
that (up to subsequences)

lim
k→∞

∫
Ω

(bk, Ak(x)vk)RN dx = ν1, lim
k→∞

∫
Ω

(bk, Ak(x)bk)RN dx = ν2.

Using lower semicontinuity (3.7) and (3.9), we obtain

lim
k→∞

∫
Ω

(
vk + tbk, Ak(x)(vk + tbk)

)
RN
dx

= lim
k→∞

∫
Ω

(vk, Ak(x)vk)RN dx+ 2tν1 + t2ν2

≥
∫

Ω

(v + tb, A(x)(v + tb))RN dx =

∫
Ω

(v, A(x)v)RN dx

+ 2t

∫
Ω

(b, A(x)v)RN dx+ t2
∫

Ω

(b, A(x)b)RN dx.

6
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From this we conclude that

2tν1 + t2ν2 ≥ 2t

∫
Ω

(b, A(x)v)RN dx+ t2
∫

Ω

(b, A(x)b)RN dx ∀ t ∈ R1.

Hence, ν1 =

∫
Ω

(b, A(x)v)RN dx. Thereby the strong convergence of the sequence{
vk ∈ L2(Ω, Ak dx)N

}
k∈N is established.

4. Main Results

To begin with, we provide the following property of the set Ψ∗ ⊂ L1(Ω) defined in
(2.1)–(2.3).

Lemma 1. Let {ζ∗,n}n∈N be any sequence in Ψ∗. Then there is an element ζ∗ ∈ L1(Ω)
such that, within a subsequence of {ζ∗,n}n∈N, we have

ζ∗,n → ζ∗ in L1(Ω), ζ∗ ∈ Ψ∗, (4.1)
ζ−1
∗,n → ζ−1

∗ in L1(Ω), and (4.2)
ζ−1
∗,n → ζ−1

∗ in variable space L2(Ω, ζ∗,n dx). (4.3)

Proof. Strong convergence in (4.1) is a direct consequence of the compactness property
of Ψ∗. Hence, ζ∗ ∈ Ψ∗ and we may assume that ζ−1

∗,n → ζ−1
∗ almost everywhere in Ω.

Since ζ∗,n → ζ∗ in L1(Ω) and ζ−1
∗ ≤ ζ−1

ad ∈ L1(Ω), it follows that the sequence
{
ζ−1
∗,n
}
n∈N

is equi-integrable. As a result, (4.2) immediately follows from Lebesgue’s Theorem (see
Theorem 1). As for (4.3), we make use the following observation. For any ϕ ∈ C∞0 (Ω),
we have

ζn dx
∗
⇀ ζ dxdt in M+(Ω),∫

Ω

ζ−1
n ϕζn dx =

∫
Ω

ϕdx =

∫
Ω

ζ−1ϕζ dx.

Hence, ζ−1
n ⇀ ζ−1 in L2(ΩT , ζn dx) (see [5]). Moreover, strong convergence in (4.2)

implies the relation

lim
n→∞

∫
Ω

ζ−2
n ζn dx = lim

n→∞

∫
Ω

ζ−1
n dx =

∫
Ω

ζ−2ζ dx.

Therefore, ζ−1
n → ζ−1 strongly in L2(Ω, ζn dx) by the properties of strong convergence

in variable spaces. The proof is complete.

Remark 2. Note that the main assertion of Lemma 1 can be failed, if in definition of
the set Ψ∗, instead of condition (2.1), we admit the following one

0 < ζ∗(x) ≤ α a.e. in Ω, ζ−1
∗ ∈ L1(Ω). (4.4)

7
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Indeed, let Ω be the open ball in RN with the center at 0 and radius 1, let 1 < δ < N ,
and let ζ∗(x) := α‖x‖δRN . Then it is easy to see that ζ∗ ∈ L1(Ω) and 0 < ζ∗(x) ≤ α
for every x ∈ Ω \ 0. Since ζ−1

∗ = α−1‖x‖−δRN and δ ∈ (1, N), we have ζ−1
∗ ∈ L1(Ω) and

ζ−1
∗ 6∈ L∞(Ω). Moreover, ζ is smooth in Ω \ 0 and ζ∗ = α on ∂Ω. This shows that the
properties (2.2), (2.3), and (4.4) are satisfied.

Let us fix x0 ∈ Ω with ‖x0‖RN = 1
2
. We consider the following sequence {ζ∗,n}n∈N

in L1(Ω), where ζ∗,n = ζ∗ for n ≤ 2 and

ζ∗,n(x) =

 α‖x‖δRN if ‖x− x0‖RN ≥ 1
n
,

α

nN
if ‖x− x0‖RN < 1

n
.

if n ≥ 3.

Then each function ζ∗,n satisfies the properties (2.2), (2.3), and (4.4). Indeed, ζ∗,n ∈
L1(Ω) and 0 < ζ∗,n(x) ≤ α for every x ∈ Ω. Since

ζ−1
∗,n(x) =


1

α‖x‖δRN

if ‖x− x0‖RN ≥ 1
n
,

nN

α
if ‖x− x0‖RN < 1

n
.

for all n ≥ 3,

it follows that ζ−1
∗,n ∈ L1(Ω) and ζ−1

∗,n 6∈ L∞(Ω). Moreover, the functions ζ∗,n are smooth
near ∂Ω and ζ∗,n = α on ∂Ω. This shows that the properties (2.2), (2.3), and (4.4) are
satisfied.

It is clear that ζ∗,n → ζ∗ strongly in L1(Ω) and pointwise a.e. in Ω. The problem is
that the sequence

{
ζ−1
∗,n
}
n∈N does not converge to ζ−1

∗ strongly in L1(Ω). Indeed, it is
the case when the sequence

{
ζ−1
∗,n
}
n∈N is not equi-integrable. As a result, we have∫

Ω

∣∣ζ−1
∗,n − ζ−1

∗
∣∣ dx =

∫
B(x0,

1
n

)

∣∣∣∣nNα − 1

α‖x‖δRN

∣∣∣∣ dx→ α−1ωN as n→∞,

where B(x0,
1
n
) is an open ball with center at x0 and radius 1

n
, while ωN is the Lebesgue

measure of the unit ball in RN .

For our further analysis, we make use of the following concept (see for comparison
[2, 3]).

Definition 3. We say that a bounded sequence{
(An, un) ∈ L1(Ω;SN)×WAn(Ω; ΓD)

}
n∈N (4.5)

w-converges to (A, u) ∈ L1(Ω;SN)×W 1,1(Ω;S)) as n→∞ if

An → A in L1(Ω;SN), (4.6)
un ⇀ u in L2(Ω), (4.7)

∇un ⇀ ∇u in the variable space L2(Ω, An dx)N , (4.8)

8
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therefore,

lim
n→∞

∫
Ω

An · ~η dx =

∫
Ω

A · ~η dx ∀ ~η ∈ L∞(Ω;SN), (4.9)

lim
n→∞

∫
Ω

unλ dx =

∫
Ω

uλ dx ∀λ ∈ L2(Ω), (4.10)

lim
n→∞

∫
Ω

(
~ξ, An∇un

)
RN

dx =

∫
Ω

(
~ξ, A∇u

)
RN

dx ∀ ~ξ ∈ C∞0 (Ω)N . (4.11)

In order to motivate this definition, we give the following result.

Theorem 2. Let
{

(An, un) ∈ L1(Ω;SN)×WAn(Ω; ΓD)
}
n∈N be a sequence such that

(i) the sequence {un ∈ WAn(Ω; ΓD)}n∈Nis bounded, i.e.

sup
n∈N

∫
Ω

(
u2
n + (∇un, An∇un)

)
dx < +∞; (4.12)

(ii) {An}n∈N ⊂ Mβ
α(Ω) and there exists a matrix-valued function A(x) ∈ SN such

that
An → A and A−1

n → A−1 in L1(Ω;SN) as n→∞. (4.13)

Then, A ∈ Mβ
α(Ω) ∩ L1(Ω;SN) and the original sequence is relatively compact with

respect to w-convergence. Moreover, each w-limit pair (A, u) belongs to the space

L1(Ω;SN)×WA(Ω; ΓD).

Proof. We note that (4.12)–(4.13) and (2.9)–(2.10) immediately imply the bound-
edness of the original sequence in L1(Ω;SN)×W 1,1(Ω;S). Moreover, due to (4.13), we
have:

d~µn := An dx
∗
⇀ Adx =: d~µ in M(Ω;SN).

Thus, the compactness criterium for weak convergence in variable spaces (see Pro-
position 1) and (4.12) imply the existence of a pair (u,v) ∈ L2(Ω)×L2(Ω, A dx)N such
that, within a subsequence of {un}n∈N,

un ⇀ u in L2(Ω), (4.14)
∇un ⇀ v in variable space L2(Ω, An dx)N . (4.15)

Our aim is to show that

A ∈Mβ
α(Ω), v = ∇u, and u ∈ WA(Ω; ΓD).

It is clear that A(x) ∈ SN and this matrix satisfies (2.4). Since

An ∈Mβ
α(Ω) ∩ L1(Ω;SN) for all n ∈ N,

9
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it follows that there is a sequence {ζ∗,n}n∈N in Ψ∗ such that

ζ∗,n(x)I ≤ An(x)I ≤ β(x)I a. e. in Ω, ∀ k ∈ {1, . . . , N} . (4.16)

Then, by L1-compactness of the set Ψ∗, there exists an element ζ∗ ∈ Ψ∗ such that
ζ∗,n → ζ∗ in L1(Ω) as n→∞. Moreover, Lemma 1 implies strong convergence

ζ−1
∗,n → ζ−1

∗ in L1(Ω), (4.17)

and (2.1)–(2.3). Hence, passing to the limit in (4.16) as n → ∞, we come to (2.5).
Thus, A ∈Mβ

α(Ω) and the limit matrix A(x) ∈ SN satisfies (2.6)–(2.7).
For our further analysis, we fix any test function ~ϕ ∈ C∞0 (Ω)N , and make use of

the following equality∫
Ω

(
A−1
n ~ϕ,An ~ψ

)
RN

dx =

∫
Ω

(
~ϕ, ~ψ

)
RN

dx =

∫
Ω

(
A−1~ϕ,A~ψ

)
RN

dx, (4.18)

which is obviously true for each ~ψ ∈ C∞0 (Ω)N and for all n ∈ N. Since

lim sup
n→∞

∫
Ω

(
A−1
n ~ϕ,AnA

−1
n ~ϕ

)
RN dx = lim sup

n→∞

∫
Ω

(
~ϕ,A−1

n ~ϕ
)
RN dx

≤ lim sup
n→∞

∫
Ω

ζ−1
∗,n‖~ϕ‖2

RN dx
by (4.17)

=

∫
Ω

ζ−1
∗ ‖~ϕ‖2

RN dx

≤ ‖~ϕ‖2
C(Ω)N‖ζ

−1
∗ ‖L1(Ω) < +∞,

it follows that the sequence
{
A−1
n ~ϕ ∈ L2(Ω, An dx)N

}
n∈N is bounded. Consequently,

combining this fact with (4.18), we conclude A−1
n ~ϕ ⇀ A−1~ϕ in the variable space

L2(Ω, An dx)N (see Definition 1). At the same time, strong convergence in (4.13) implies
the relation

lim
n→∞

∫
Ω

(
A−1
n ~ϕ,AnA

−1
n ~ϕ

)
RN dx = lim

n→∞

∫
Ω

(
~ϕ,A−1

n ~ϕ
)
RN dx

=

∫
Ω

(
~ϕ,A−1~ϕ

)
RN dx =

∫
Ω

(
A−1~ϕ,AA−1~ϕ

)
RN dx.

Hence (see Proposition 3),

A−1
n ~ϕ→ A−1~ϕ strongly in L2(Ω, An dx)N ∀ ~ϕ ∈ C∞0 (Ω)N . (4.19)

Further, we note that for every measurable subset K ⊂ Ω, the estimate∫
K

‖∇un‖RN dx ≤
(∫

K

‖∇un‖2
RN ζ∗,n dx

)1/2(∫
K

ζ−1
∗,n dx

)1/2

≤
(∫

Ω

(∇un, An(x)∇un)RN dx
)1/2(∫

K

ζ−1
∗,n dx

)1/2

≤ C

(∫
K

ζ−1
∗,n dx

)1/2

10
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implies equi-integrability of the family {‖∇un‖RN}n∈N. Hence, {‖∇un‖RN}n∈N is weakly
compact in L1(Ω), which means the weak compactness of the vector-valued sequence
{∇un}n∈N in L1(Ω;RN). As a result, by the properties of the strong convergence in
variable spaces, we obtain∫

Ω

(
~ξ,∇un

)
RN

dx =

∫
Ω

(
A−1
n
~ξ, An∇un

)
RN

dx

by (3.8), (4.15), and (4.19)−→
∫

Ω

(
A−1~ξ, Av

)
RN

dx =

∫
Ω

(
~ξ,v
)
RN

dx ∀ ~ξ ∈ C∞0 (Ω)N .

Thus, in view of the weak compactness property of {∇un}n∈N in L1(Ω;RN), we conclude

∇un ⇀ v in L1(Ω;RN) as n→∞. (4.20)

Since un ∈ W 1,1(Ω; ΓD) for all n ∈ N and the Sobolev space W 1,1(Ω; ΓD) is complete,
(4.14) and (4.20) imply ∇u = v, and consequently u ∈ W 1,1(Ω; ΓD). To end the proof,
it remains to observe that (4.14)–(4.15) guarantee the finiteness of the norm ‖u‖A (see
(2.8)). Hence, u ∈ WA(Ω; ΓD) and this concludes the proof.
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