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The  problem  of  justification  of  the  correctness  of  the matrix‐operator models  of  the mode‐

matching  technique  as  applied  to  the  problems  of  resonant  wave  scattering  by  waveguide 

discontinuities has remained of great  importance throughout  the years of  the  intensive use of 

the method. Another unsolved problem  is substantiation of using the truncation procedure to 

solving  the  obtained  infinite  matrix  equations.  The  present  paper  is  aimed  at  proving 

rigorously  correctness  of  the mathematical model  in  the  form  of  the  operator‐based  Fresnel 

formulas for the specified class of mode diffraction, constructing projection approximations for 

the sought‐for scattering operators and justifying their convergence. To that end a generalized 

mode‐matching  technique  is  used.  The  “generalized  operator‐based Fresnel  formulas”  are 

derived for the scattering operator matrices. The universality of the constructed operator model 

in  the  form of  the Cayley  transform  is proven.  It  is shown  that domain of correctness of  this 

model  is  completely  determined  by  the  established  operator  properties  of  the  generalized

scattering matrix. The unconditional convergence of the projection approximations to the exact

solution is proved analytically. The mode‐matching technique which is widely used for solving 

scalar  problems  of  waveguide  mode  diffraction  possesses  a  matrix‐operator  nature  and  an

adequate  to  this  nature mathematical  apparatus,  specifically,  the  theory  of  operators  in  the

Hilbert  space. The  suggested generalization  of  the mode‐matching  technique  can  be used  for 

rigorous analysis of microwave devices. 
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1. INTRODUCTION 

The previous parts of the study [1,2] present fundamentals of the generalized mode-
matching technique which has been used to derive the operator-based Fresnel formulas 
for step-like (i.e., with the inherent volume 0V ) discontinuity in a waveguide 
section. It appears that in the case of volumetric ,0( V  i.e., forming an open resonant 
cavity) waveguide discontinuities this approach leads as well to similar operator 
relations (or “generalized operator-based Fresnel formulas”) however already for the 
generalized scattering matrix S. 

In this part of the study we consider specific features of application of the mode-
matching technique generalized through introducing scattering operators in the matrix 
form for analyzing the problem of mode diffraction in the general case 0V  of 
hollow H- and E-plane wave transformers, including i) the technique of constructing 
the matrix-operator model; ii) determination of the existence condition for the sought-
for solution and rigorous proof of the correctness of the developed model and  
iii) analytical investigation of the convergence of the reduction method approximations 
to the exact solution and of the behavior of the condition number of the matrix 
operators. 

The present paper is structured as follows. First, we introduce the operator 
matrices necessary to completely describe the characteristics of planar wave 
transformers. Then in terms of the generalized scattering matrix S  and its Cayley 
transform we formulate the basic energy laws which play a key role in the further 
analysis and are poorly presented in the available scientific literature. 

Next, for the classical problem of right-angled bend of a rectangular waveguide we 
derive the generalized Fresnel formula for the operator S  and prove the universality of 
this matrix-operator model for the whole class of the problems under consideration. 
Hereupon we justify the existence, uniqueness and robustness of the found solution, as 
well as the unconditional convergence of the projection approximations. 

In the paper the basic conceptions and terminology of the two first parts of the 
study [1,2] are used. The necessary generalizations are presented below. 

 
2. CLASS OF THE MODE DIFFRACTION PROBLEMS UNDER INVESTIGATIONS 

AND THE USED NOTATIONS 

Let us consider the scalar diffraction problem for the modes 0mLM , m  1, 2,…, and 

1mLE , m  0, 1, …, in a hollow H-plane and, respectively, E-plane waveguide 

transformer of the standard geometry with N ports, N 1, 2, …, [3,4]. The resonant 
cavity and power-feeding regular waveguides are homogeneous along the Cartesian 
frame axis oriented perpendicular to the H- (E-) plane. It is assumed that the domain of 
field determination is filled with a homogeneous lossless medium, the metal walls on the 
boundaries of this domain are perfectly conducting and the waveguide arms are perfectly 
matched with the load. The volume 0V  enclosed by the metal walls of the wave 
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interaction region and reference planes Nnn ,1,   located in the regular waveguides 
is supposed to be free of field sources/sinks. The time dependence is accepted in the 

form  ,exp ti  where ,k  with ,0Im k  is the wavenumber. 

Let the mode composition of the incident wave in each of the N  ports of the 
transformer be described by an infinite row-vector of complex amplitudes 

.,1,2 Nnn b  Then the vector of amplitudes of the specified field sources 

 Nbbbb ,...,, 21  belongs to the Hilbert space   .2
Nh   Next, let nP  modes be 

propagating for waveguide port n. Using the corresponding orthoprojector denoted as 

nPP  we can form an operator matrix of projection on the all existing in the N  ports 

propagating modes, viz. 
 

 
1 2

diag , , ... ,
NP P PP P P P .       (1) 

 

By this definition P  is an operator of a finite rank  P



N

n
n TrP

1

 (in what 

follows we will suppose that ).0  The orthoprojector on the all evanescent modes is 
PIQ  , where I  stands for the identity operator. (Note that the existence of two 

mutually orthogonal subspaces of the vectors of amplitudes of the propagating and 
evanescent modes makes it possible to introduce the Pontrjagin space [5] as the 
domain of definition of the scattering operators). 

The n-th regular waveguide (or n-th port of the transformer) will be characterized 

by the reflection operator in the matrix form Rn  and unitary portal operator 

nnn PPP i PQU   [5,6]. The matrix operator of the wave transmission from the port p 

into the port q will be denoted as .Tqp  We emphasize that the standardized operators 

22:  Rn  and 22:  Tqp  are used here (see, for example, [7]). 
The wave transformer under consideration can be completely described with the 

use of the following portal operator matrix acted in the space h  
 

 
NPPP UUUU ,...,,diag

21
         (2) 

 

and the generalized scattering matrix 
 























RTT

TRT

TTR

S

NNN

N

N







21

2221

1121

.        (3) 

 

Making use of the operators Eqs. (2) and (3) it is possible to construct the 
characteristic operator (see, for example, [6]) 
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    hh  :†SIUSIG ,        (4) 
 
where the dagger † stands for the Hermitian conjugation. 

 
3. CONSERVATION LAWS AND PROPERTIES OF THE SCATTERING 

OPERATORS 

For the diffraction problems of the class under consideration four (I-IV) fundamental 
laws of electromagnetism are valid. These are 

I. The first Lorentz lemma which yields the symmetry property 
 

SS T                       (5) 
 

(the superscript T  means transposition); 
II. The oscillating power theorem [8] which leads to the relation 
 

      ,,,, 2
||||

2 hUUkUU VV

T  bbSIb     (6) 

 
where U  stands for the phasor in the volume V  and U||  is the gradient of this 

phasor in the H- (E-) plane; and 
III-IV. The complex power theorem and the second Lorentz lemma [9] which 

jointly yield the equality 
 

    .,
222

||
†

22

hUkU
VLVL

 bbGb      (7) 

 
In the formulas Eqs. (6) and (7) we have used the standard notations 
 

                                         ,
V

V

f g f g dV   and    
2

2 †,
L V V

f f f  

 
for the scalar (bilinear) product and norm of function in the space  VL2 . 

As a corollary of the relation Eq. (7), the energy conservation law in terms of the 
characteristic operator Eq. (4) takes an especially simple form, viz. 
 

  0
2

1
Im †  GGG

i
,        (8) 

 
i.e., the operator G  is a self-adjoint one. The structure of this operator Eq. (4) suggests 
that it is reasonable to introduce into consideration a homographic transformation of 
the generalized scattering matrix. 
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To that end let us exclude in the course of the further analysis the singular points 
on the frequency axis (i.e., resonance frequencies) for which, as follows from the 

relations Eqs. (6) and (7), we have   02  TbSIb  and 0† bGb  with .0b  As 
can be easily seen, this requirement means elimination of two real numbers of infinite 
multiplicity from the spectrum of the generalized scattering matrix, i.e.,  S1  [6]. 

Now we can introduce the Cayley transform of the operator S  after the formula 
 

  










E

H
.

SI

SI
SW


          (9) 

 
(Note that by definition the operators YW   and ZW   are the generalized 
admittance and impedance matrices, respectively.) Then the characteristic operator 
Eq. (4) takes the form 
 

    




















E

H
,

4

1 1†
†

1 IW
UW

WU
IWG 




     (10) 

 
and the energy conservation law in the form of Eq. (8) is 
 

















 

E

H
.0Im

1

UW

UW



       (11) 

 
The latter equality can be also written in the form 
 



























 E

H
.

1
†

1 U

U
W

U

U
W         (12) 

 
The meaning of this condition for the certain problem of mode diffraction will be 
considered in Section 4. 

As was shown in paper [5], the operator W  is a quasi-Hermitian one. If its 

eigenvectors form a set  ,d  then for all nonreal points of its spectrum  W  the 
relation Eq. (11) yields 

 

  









E

H
d ,ReIm 2       (13) 

 

where 0,
222 
 TTT

d QdQdPd . 
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This result suggests the following. If the working frequency is such that the energy 
conservation law in the form of Eq. (8), (11) or (12) is valid, then the condition 

 W1  holds and hence, the following representation occurs 
 

  











E

H
,





WI

WI
S       (14) 

 
and the spectral points  S  satisfy the relation 
 

 ,1Im2
22  d        (15) 

 
which determines localization of the entire spectrum of the generalized scattering 
matrix [6]. 

 
4. WAVEGUIDE RIGHT ANGLE CORNER BEND 

As a classical example of a volumetric discontinuity in the form of a two-port 
transformer consider a waveguide corner of a fixed height l  with a 90-bend. It is 
interesting that at least three different approaches to this problem, specifically, the 
mode-matching technique, the method of partial overlapping regions [10] and the 
domain-product technique [11], in combination with the technique of matrix operators 
all lead to the final matrix model in the same form. Here we present solution of this 
problem by the generalized mode-matching technique with the use of the Green 
function apparatus. 

The whole domain of field determination specified in a single Cartesian frame of 
coordinates  , ,x y z  can be divided into three osculating partial sub-regions. These are 

(1) the semi-infinite waveguide with     1 0, ; , ,x a z b     (2) the same 

waveguide with     2, ; 0,x a z b     and (3) the mode interaction region (or 

“coupling region” V) with  21;  zx  (for all these sub-regions  ly ,0 ). Two 

reference planes  bzx  ;11  and  2 2;x a z     are coincided with the 

boundaries of the mentioned partial regions. The normals to these planes outward with 
respect to the coupling region 3 will be denoted as 01 zn


  and 02 xn


 , respectively. 

It is assumed that regions 1 and 2 contain independent sources of waves which 
generate monochromatic fields (the time-dependent factor is omitted in what follows). 
Then an electromagnetic wave of a finite power is incident from each waveguide arm 
upon the discontinuity. The wave field represents an infinite set of modes with any 

known amplitude distribution .2,1,2  pp b  
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The diffracting modes are specified by the complete orthonormal systems of 
transverse eigenfunctions collected in the column-vectors  1 ,xφ ,1x  and  2 ,zφ  

2z , with the following basic properties 
 

     
 

, , ; 1,
,

, , , ; 2,
q

T
q q

T
q q

x x q

z z q

    
 



   
   I

 

 
    (16) 

 
presented here through the Dirac delta-function and idem-factor .I  Then, making use 

of propagation constants of the waveguide modes   ,2,1...;,1,0,)(  qmm
q  lying in 

the first quadrant of the complex plane, we form diagonal “matrix operator of 
similarity” according to the rule 
 

                                          ,1)0(,
)( 

  nmm
q

mnqI  

 
where mn  is the Kronecker delta. Note especially that the cutoff frequencies 

( )( , : 0)q
mk m    are excluded from the consideration as unphysical values. 

Let q
pp

q
pU ub   be a phasor to characterize all components of the field in partial 

region q generated by the source located in port p, ,2,1p  .3,1q  The vector-

function q
p u  should satisfy the homogeneous Dirichlet (H) and Neumann (E) 

boundary conditions on the conducting surfaces and condition at infinity for the 
waveguides, and also should provide finiteness of the field energy within the domain 
of field determination and continuity of the tangential field components on the 
boundaries of the osculating partial sub-regions, viz. 

 

;,
,

,
1

31

31 bzx
p

z
p

z

pp












uu

uu
     (17) 

 

.,
,

,
2

32

32 









zax

p
x

p
x

pp

uu

uu
     (18) 

 
Mode expansions of the vector-functions of the first two regions on the reference 

planes can be represented as 
 

 
;2,1,

,,

,,

21

21


















qp

pq

pq

q
/

qγ
qp

p
/

pγ
p

q
p

q 



IT

IRI
u      (19) 
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 
















.,

,,

21

21

pq

pq

n
q

/
qγ

qp

p
/
pγ

p

q

q
p

q




IT

IRIu
       (20) 

 
The unknown vector-function for the coupling region 3 is represented using the second 
Green formula, viz. 
 




































































)(,,,

)(,,,

21

21

2

2

1

1

2
2

1
1

3

E
n

G
n

G

H
n

G

n

G

p
N

p
N

D
p

D
p

p





uu

uu

u      (21) 

 
guaranteeing the continuity of the tangential electric field components on the partial 

region boundaries. In these formulas,  rrG ND ,)(  stands for the known Green function 
of the rectangular coupling region which satisfies the homogeneous Dirichlet 
(Neumann) boundary conditions. For our purpose there is no need here to write out the 
explicit form of the function ( )D NG . Note however that two different sourcewise 
representations of the same Green function should be used in the two summands of the 
formula Eq. (21). It remains to secure the continuity of the magnetic field tangential 
components through substitution of the representation Eq. (21) into the respective 
equalities Eqs. (17) and (18). As a result we obtain certain functional relations for the 

vector-functions 1up  and ,2up  .2,1p  
Making use of the obtained functional relations and the properties Eq. (16) we find two 

operator equalities for 1p  and 2p , respectively, through matching the fields on the 

boundary ,1  viz. 

 

 
 

1 1 12
11 21

21 21 2
11 21

;

,

H

E

    
 

    

I R I R D TD

T TD I R D




     (22) 

 
and a pair of similar operator relations through matching the fields on the boundary 

,2  viz. 

 

 
 

12 1 12
12 22

2 21 2
12 22

;

.

H

E

    
 

     

T I R D TD

I R TD I R D




    (23) 

 
In the formulas Eqs. (22) and (23) we have introduced the following operator matrices 
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111 121/ 2 1/ 2

221 22

, ;
H

E



  

    
     

    

I 0F F
D I I I

0 IF F
    (24) 

 

 




























































)(.,,

)(,,,
2

EG

H
nn

G

q
p

p
q

T
qp

N

T
pq

qp

D

pq




F    (25) 

 

Also note that the definition Eq. (25) yields the symmetric property ,T
qppq FF   

.2,1, qp  
The equalities Eqs. (22) and (23) can be united in an obvious way into the 

following compact relation 
 

                                          









E

H
,DSISI   

 
from which the sought-for solution formally follows in the Weyl’s form [12] 
 

  











E

H
,

DI

DI
S                   (26) 

 

which is very suitable as for using the symmetric properties SS T  and .DD T  

 
5. CORRECTNESS OF THE OPERATOR MODEL 

Consider the problems of existence, uniqueness and robustness of the solution 
Eq. (26). Comparing the obtained expression with the formula Eq. (14) we find that 

.WD   Therefore the problem solution in the form Eq. (26) exists and is unique for 
all values of the wavenumber except the resonance frequencies of the coupling domain 
V  since under this condition we have  D1  as a corollary of the energy 
conservation law Eq. (11). 

As can be shown, the fulfillment of the energy law in the form of Eq. (12) for the 
problem in question means self-adjointness of the operator matrix F  specified by its 

elements Eq. (25). In turn, this fact corresponds to the equality ,pqpq FF   ,2,1, qp  

which is provided by the property of the traces of the Green function and its second 
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derivative on the reference planes, and also by real-valued transverse eigenfunctions of 
the hollow rectangular waveguide. And vice-versa, if the Green function of the 
coupling domain V  is not defined (i.e., in the case of resonance frequencies), then the 
energy conservation law Eq. (12) becomes pointless. 

Finally, consider the operator   1 DIA  which proves to be bounded if the 
equality Eq. (12) holds. This means that the solution Eq. (26) will be stable for all 
values of the wavenumber except some vicinity near the resonance frequencies where 

the condition number   1cond  A A A  becomes enormous. 

 
6. UNIVERSALITY OF THE CONSTRUCTED MATRIX MODEL 

Now, let us show that the fundamental energy law for the oscillating power Eq. (6) in 
the case 0V  leads to the operator model in the form of Eq. (26). 

We will proceed from the fact that the generalized scattering matrix represents a 
quasi-Hermitian operator [5] for which, according to the formula Eq. (15), localization 
of the entire spectrum  S  is known. Substitution of the eigenvector d  of this 
operator into the relation Eq. (6) yields the equality 
 

 21 ,        (27) 
 

where    2
|| ||

1
, , .d d d dT VV

U U k U U
 

      d d
Solution of the uniformization 

problem (see, for example, [13]) for the algebraic curve Eq. (27) can be written as 
 

 
1,

1

4
,

1

1
2









 .     (28) 

 
As can be shown, this solution alone corresponds to the symmetric property Eq. (5) 
and this is why it is unique. 

So, there exists a single operator of the problem  : ,W d     1 / 1     , 

   W , related to the sought-for generalized scattering matrix through the Cayley 

transform as 
 

IW

IW
S

SI

SI
W








 .      (29) 

 
The above mentioned symmetric property of the generalized scattering matrix Eq. (5) 

yields the property WW T  which is tantamount to the representation ,00
TWWW   

where hh :0W  is a bounded operator. 
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Next, let us introduce a matrix operator after the formula   .2 0
1 WIWK   

Then the theorem Eq. (6) takes the form 
 

    .,,, 2
|||| hUUkUU VV

TT  bbKKb    (30) 
 

This suggests that the operator K  determines the oscillating field in the volume .V  
Note that the derived expressions 
 

 
IKKS

WIWK

IW

IW
S


















T2

0
1 ,2

,
     (31) 

 
are similar in their form to the matrix-operator Fresnel formulas obtained in paper [1]. 
In contrast to the latter they have no scalar analogues. For this reason the equalities 
Eq. (31) can be referred to as the “generalized operator-based Fresnel formulas”. 

Thus, the first proposition has been proved, which states the following basic result. 
Theorem 1. For each problem of mode diffraction in a waveguide transformer with the 
wave interaction region 0V  for which the reciprocity theorem Eq. (5) and the 
oscillating power theorem Eq. (5) are valid there exists a mathematical model in the 
form of the generalized operator-based Fresnel formulas Eq. (31). 

 
7. CONVERGENCE OF THE PROJECTION APPROXIMATIONS 

Now let us find the approximate solution Ŝ  by the truncation procedure. To that end 

we will use the orthoprojector  1 2
ˆ ˆ ,M MP P  acting from 2  into a finite-dimensional 

space whose dimension is determined by the number of the waveguide modes 1M  and 2M  
taken into account in the corresponding ports of the wave transformer. 

Repeating completely the above reasoning, however now for the approximate 
representations of the field components in the form of truncated mode expansions, and 
demanding the energy flow continuity for the field approximation, we obtain the 
following approximate solution 
 

 
ˆ ˆ

ˆ
ˆ ˆ

H

E

 
     

P D
S

P D
       (32) 

 
and the energy conservation law 
 

†

ˆIm 0.
H

E

    
         

U
D

U
       (33) 
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Here we have used the notation ˆ ˆ ˆ .D P DP  

Consider the operator   1ˆ ˆ ˆ .


 A P D  If the resonance frequencies of the volume 

V  have been excluded, then the relation Eq. (33) holds and consequently  ˆ1 .  D  

Under this condition the family of operators  1 2
ˆ , ,M MA  will be bounded at every 

point of the domain of their definition. Then, according to the Banach-Steinhaus 

theorem, this family will be uniformly bounded, 1 2
ˆ const, , .M M A  Therefore, 

 

   ˆcond const 1 .    A D       (34) 

 
Thus, the projection approximation Eq. (32) is existent, unique and stable if the 

operation frequency lies outside the nearest vicinity of the resonance frequency of the 

coupling region V where  ˆcond .A  

Next, the formulas Eqs. (26) and (32) yield the representation 
 

 ˆ ˆˆ ˆ ˆ2  PS S A P D D A,      (35) 

 
using which we find the estimate 
 

   1
ˆˆ ˆconst ,T T  PS S b I P d      (36) 

 

where Abd 2  and 2b . Since the orthoprojector  1 2
ˆ ,M MP  in the space 2  

strongly (but non-uniformly) converges to the identity operator with ,, 21 MM  

1 2/M M , the obtained estimate Eq. (36) means that the following proposition is valid. 
Theorem 2. The projection approximations Eq. (32) strongly converge to the true 
solution Eq. (26), with the relative convergence phenomenon being absent. 

 
8. CONCLUSIONS 

The generalized mode-matching technique has been applied to analyzing wave 
transformers with a resonant mode-interaction cavity .0V  This class of the 
diffraction problems is defined as such for which the four basic energy laws in the 
form of Eqs. (5) to (7) are valid. 

The solution of the classical problem on the waveguide right angled bend has been 
obtained in the form of the generalized Fresnel formula for the scattering matrix S  in 
the operator form Eq. (26). 



Generalized Mode-Matching Technique… 567 

Volume 72, Number 7, 2013 

It has been proven that such form of the matrix-operator model of the mode-
matching technique is common for the whole class of the waveguide mode diffraction 
problems under consideration. The universality of the mentioned Fresnel formula is 
conditioned by the energy law Eq. (6) and existence of a single operator of the problem 
which is determined by the geometry of volumetric discontinuity and dependence on 
working frequency. 

It has been proven rigorously that correctness of the generalized operator-based 
Fresnel formulas is an immediate corollary of the energy conservation law in the form 
Eqs. (11) and (12). 

The applicability of truncation procedure for determining approximation of the 
generalized scattering matrix has been justified. The unconditional strong convergence 

of the projection approximations Ŝ has been proven analytically. 
The developed and rigorously substantiated generalized mode-matching technique 

can be efficiently used for strict analysis of microwave transformers. 
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