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For the scalar problem of mode diffraction on the abrupt waveguide discontinuity the Fresnel 

formulae  for  the  reflection  and  transmission matrix  operators  are  derived  using  the mode‐

marching technique. This generalized form of the matrix model is an immediate corollary of the

proposed new statement of the problem. Making use of the energy conservation law in operator

form,  the  correctness  of  the  obtained Fresnel  formulae  for  the  scattering  operators  is  proved 

analytically.  Thus,  the  developed  approach makes  it  possible  to  substantiate  completely  the

widely used mode‐matching technique for the class of diffraction problems under consideration.
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1. INTRODUCTION 

The reflection of the time-harmonic plane wave from the infinitely thin plane boundary 
 of two different material media (i.e., from a step-like shift or an abrupt discontinuity 

of electromagnetic properties of space) is discussed thoroughly in the majority of 
manuals (here we restrict all possible references to the fundamental work [1]). An 
appropriate mathematical law found by A. Fresnel for transverse waves of an elastic 
ether follows straightforwardly from the boundary conditions 
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also known as “the matching conditions” for tangential components of the electrical 
and magnetic phasors of the frequency  . The Fresnel formulae take a particularly 
simple form under the normal incidence of the wave on the boundary S ; for instance, 
they can be written as 
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for two possible E  and H  polarizations  with respect to the observation plane. Here 
R  is the reflection coefficient in the first medium and T  denotes the factor of wave 

transmission from the first medium to the second one, whereas 2 1
21

2 1

 
 

   is the 

relative wave impedance/admittance. (Note the property of Eqs. (2), in the substitution 
      , which provides for the formula for the reflection coefficient in the second 

medium). 
It would appear reasonable that the law of the form as given in (2) will occur for 

all phenomena of wave diffraction when the matching conditions (1) are met and the 
Poynting vector of the incident wave is normal to the plane boundary of the step-wise 
variation in the waveguiding structure properties. 

The goal of this paper is to substantiate rigorously this guess for the problem on 
N -furcation of a generalized waveguide, which simulates the class of scalar problems 
on mode diffraction by the abrupt waveguide discontinuity. 

Relations (1) can also be regarded as the initial equalities of the mode-matching 
technique widely used in computational electromagnetics. Therefore in this paper we 
assert that for the considered class of wave diffraction problems the mathematical 
model of the mode-matching technique can be written in the form of the Fresnel 
formulae for the reflection and transmission matrix operators. 

However, note that the commonly known version of the mode-matching technique 
(presented, for example, in the book [2]) results in the infinite systems of linear 
algebraic equations in which identifying the Fresnel formulae is quite a challenge. 
Therefore, at first we need to carry out the procedure of generalizing the mode-
matching technique. In this qualitative modification of the method, the key point is that 
the unknown vector of the Fourier coefficients is replaced by the matrix scattering 
operator sought for. In the applied electrodynamics this constructive idea had appeared 
to be consistently realized for the first time in the work [3]. This approach will be 
subsequently referred to as the matrix operator technique [4]. 

The found Fresnel formulae in operator form lead to the far-reaching 
consequences. In this paper, the potentialities of the proposed approach will be 
demonstrated with the solution to the actual problem of rigorous substantiation of the 
matrix model for the mode diffraction on the abrupt discontinuity in the waveguide. 

 
2. GEOMETRY OF THE PROBLEM AND THE MATCHING CONDITIONS FOR THE 

PHASORS 

Consider the abrupt N -furcation of a generalized rectangular cross-section waveguide 
by the system of semi-infinite perfectly conducting finite-thickness screens. We will 
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describe the geometry of the problem in the orthogonal coordinate system  , ,   , 

which is a generalization of the 2-D Cartesian    , ,x z    and polar    , ,     

frames in the plane 0  . In this coordinate system, the considered regular waveguide 

is a homogeneous one along the Cartesian axis O , whereas its perfectly conducting 

walls are formed by two coordinate surfaces 1,2const   separated by the interval . 

Assume that the waves propagate along axis O
1

 , which is directed towards furcation. 

An s -th screening layer that splits the regular waveguide is created by the 

coordinate surfaces of const   type; it has a thickness of , 1,s 1Ns  


. An interval 

between the screening layers , 2,q N 1q  


 is the width of q -th regular waveguide 

which is geometrically similar to the generalized waveguide under consideration. In 
the general case the second or/and  1N  -th waveguide may be non existent; then we 

have an additional step discontinuity. A single reference plane is placed to the 
discontinuity plane 
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exp
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The time dependence i t   is omitted throughout. 

Let us consider the diffraction of -modes,  with  0mLM 1,2, ...,m

 -components of the field H 0, E 0  , or of -modes,  with 

, which corresponds to the H -plane and, accordingly, to the 
1nLE 0,n  1,...,

0, 0E H   E -plane 

problem. In the q -th waveguide, q 1, 1N 


, the travel of the -th mode in the 

positive direction of axis O

m

  is specified by the exponent   q
mexp q

m  , where  is 

the propagation constant such that Re 0, Im 0q q
m m    or . 

Next, let 

Re 0, Im 0q q
m m  

  
(0)1

  q
q m 

q
m




    be the column-vector of the real-valued transverse 

eigenfunctions of the -th waveguide. Their basic properties are briefly described as 
 

  ; ,
q

q q 


    T
q q δ η - η    T  I  .       (4) 

 
Here the Dirac delta has been used, the superscript T  denotes the transposition; the 
corresponding parentheses symbolize the integration over the interval q  and  is the 

identity matrix operator (the idem-factor). 

I

Next, let the scalar function  p
qU   denote the sought-for phasor, which 

determines in the q -th waveguide all the components of the electromagnetic field 
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whose source is in the p -th waveguide, , 1, 1p q N 


. It would appear natural to 
assume that this source generates the field which is a complete set of modes 

 or   with any prescribed distribution of complex amplitudes that 

we will collect into the row-vector 

 0 1m m
LM



 1 0n n
LE





  2(0)1m m
b





p p b . Let us represent the south-for 

phasor in the form 
 

   p
q q

p pU   b u ,          (5) 

 

where each element of the column-vector   ( )p p
q muu

(0)1

q

m





 is the solution to 

the respective boundary-value problem in the q -th regular waveguide. Namely, the 

function  ( )p q
mu   has to satisfy (a) the 2-D Helmholtz equation; (b) homogeneous 

boundary conditions on the surface of perfect conductors; (c) the condition at infinity 
for waveguides and (d) the condition of energy boundedness in any closed volume 
inside the domain of field determination. The validity of expression (5) stems 
obviously from the linearity of the boundary-value problem under consideration. 

The field continuity conditions on the common boundary of the first and q -th, 

, waveguides have the form of equalities: 2, 1q N

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whereas on the remaining parts of reference plane (3) the homogeneous boundary 
conditions are satisfied: 
 

mo
, 0; 1,

mod
s N  1.

LM
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In equalities (6) and (7) the symbol /     stands for the differentiation operator. 

Substituting the formula (5) into Eqs. (6) we obtain the relations that hold true for all 
. We then immediately arrive at the following equalities: 2

p b 
 

1

1
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;
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p p
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 ;

;

q

p p
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       (8) 

u u
 

which represent the sought-after matching conditions for phasors written as (5). Along 
similar lines, we deduce from (7) that the vector function  or its derivative  1

p u 1
p u

Telecommunications and Radio Engineering 



Fresnel Formulae for Scattering Operators 753 

satisfies the homogeneous boundary conditions on the face ends of perfectly 
conducting screens. 

 
3. FRESNEL FORMULAE IN OPERATOR FORM 

In corresponding regular waveguides, the unknown function  p
qu   can explicitly 

be expanded into a series according to orthonormal waveguide modes [4,5]. In this 
case, the vector nature of this function dictates the emergence of matrix scattering 
operators in these expansions. 

Thus, we arrive at a new following formulation of mode-diffraction problem. The 
finite-power wave is scattered by a given discontinuity in the waveguide; the field of 
this wave is an infinite set of modes with any known distribution of amplitudes. It is 
necessary to find the matrix operators of mode reflection and transmission. 

For the problem in question we write at once the required relations on the 
reference plane (3): 
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Here we have introduced a reflection matrix operator in the p -th waveguide 

 and a matrix operator of mode transmission from the 2:p R   2 p -th waveguide 

into the -th waveguide . In formulae (9) and (10) the diagonal operator q


2:pq T   2

  
 0 1

m

1/ 2

n m
n




 

0

1/ 2 p
p m

 I

p
m 

 is defined under the condition that the cut-off points (for 

which  at certain ) are absent. Here mn  is the Kronecker delta. 

Substituting (9) and (10) into the matching conditions (8), using the Galerkin 
procedure and taking into account the properties of eigenfunctions (4), we come to a 
formal solution of the problem in terms of scattering operators: 
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An expression for the reflection operator in the p -th waveguide, , can also be 
recast in a more convenient form: 

2p 

 

  ;pp
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 
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Here the new operator  is connected to the operator  by the following 

relations 

, 2,p p D ˆ
ppD
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p pp pp pp p p
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In the special case, 1 21,N      , which is correspond to the canonical 
problem of mode diffraction on a step discontinuity in the waveguide, the solution (11) 
and (12) takes a rather simple form: 
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which is similar in form with the Fresnel formulae (2). In addition, note that in order to 
find the scattering operators in the 2-nd waveguide it would suffice to make 
substitutions    0 0 ,T  D D   in formulae for scattering operators (14) (with the 

above-mentioned analogous property of Eqs. (2)) 

Telecommunications and Radio Engineering 



Fresnel Formulae for Scattering Operators 755 

Thus, a new statement of the considered mode-diffraction problem leads to the 
solution in the form of the Fresnel formulae for scattering operators (11)-(14). As will 
be apparent from the next Section, the existence and boundedness of all afore-
mentioned inverse operators is guaranteed by the power conservation law. 

 
4. CORRECTNESS OF THE OPERATOR FRESNEL FORMULAE 

We validate the correctness of the developed mathematical model by implying that 
there is some proof of existence and uniqueness of solution (11)-(14) as well as of its 
stability on a set of bounded matrix operators defined in the Hilbert space . 2

Note that for the finite value of 21 0  a pair of linear-fractional transformation 
formally follows from the first Fresnel formula (2): 

 

21
21

21

1 1

1 1

R
R

R

 
  

 
 


,         (15) 

 
from which in its turn a two-sided implication follows: 
 

21Re 0 1R   .          (16) 

 
In electrodynamics terms, these inequalities are in agreement with the energy condition 
for ordinary passive media  0; 0           

21 1, R

 and signify that the numerical 

Fresnel formulae (2), (15) are correct (i.e., 1   ). 
Let us show that the correctness of obtained operator Fresnel formulae (11)-(14) 

also follow from the fundamental energy law. Our proving is based on the previously 
established (see [4]) a certain duality of properties of the operators, which form the 
first Fresnel formula (11) or (13). Namely, if for the given matrix operator  the 

localization of its spectrum 

pD

 pD

p

 is unknown, then it is just the basic characteristics 

of the entire spectrum of the sought-for reflection operator  are completely 

defined by the generalized power conservation law [6]. The interrelation of these two 
operators in the form of the first Fresnel formula makes it possible to find all of their 
required properties. 

 R pR

Theorem 1. The Fresnel formulae (11)-(14) are the complete and consistent 
solution of the considered problem of mode diffraction on the abrupt discontinuity in 
the waveguide. 

Proof. It amounts to substantiating the condition  1 p  D , which is equivalent 

to the existence of the bounded operator   1
1 :p


D 2 2   1p, , 1N 


. 
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The diagonal blocks of the generalized power conservation law (formula (20) from 
[6]) yield the following relation: 

 

   
1

† †

1,

, 1,
N

p p pq pq
p q

q q p

p N

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   I R U I R TU T 1
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,        (17) 

 
where the dagger “ † ” is for Hermitian conjugation. It follows from the definition of 

the cramped unitary operator   
(0)1

exp arg p
p mn m

m
i




   U    that its numerical 

range lies completely within the fourth quadrant of the complex plane. Hence, all the 
complex numbers of the type 
 

1
† †

2
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,
N

p pq pq p p
q

q q p



 

  b TU T b b    

 
are also belong to the same quadrant. It then follows from (17) that the spectrum 

 p R  lies within the unit disc and each nonreal point of this spectrum is an 

eigenvalue of finite multiplicity [6,7] (see also [2,4,8]). Hence, there exists the Cayley 
transform, which in Weyl’s notation takes the form [9]: 
 

p

p p





I R

W
I R

.            (18) 

 
As corollary of the spectrum mapping theorem (see, e.g., [10]) the spectrum of the 

operator  lies entirely within the right-hand half-plane, pW  Re 0, p   W   . 

The apparent relation 
 

1
1

1

, 1;

, 2,
p

p

p LM

LEp

        

W
D

W            (19) 

 
completes the proof. 

Theorem 2. The operator  is an accretive one, whereas the reflection operator 

 is a contraction, . 

pD

1N


p R 1,p  


Proof. The two-sided implication identical-in-form with Eq. (16) 
 

Re 0 1p
p   W R    

 
is the basic property of the Cayley transformation (18) (e.g. see [7]). Therefore it 
would suffice to prove the accretiveness of operator , i.e., Re . pD 0p D
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In terms of the Cayley transform the energy law (17) takes the form: 
 

   
1

† †

1,

1

4

N
pq pq

p p p q p
q q p



 

      W U W I T U T W I .         (20) 

 

From this equality it follows that the numerical range of operator  lies entirely 

within the fourth quadrant of the complex plane. The literally replicated proof of 
theorem 2 from the paper [7] results in equality Re . Identity (19) completes 

the proof. 

p pW U

0p W

The stability of the found solution (11)-(14) is established by the following 

Theorem 3. The operator   1

p p


 A I D  is an accretive contraction: . †Re p pA A A p

Proof. Through direct calculation we obtain 
 

 †Re Re 0p p p p p p  A A A A D A†

 

  
 

as a corollary to the accretiveness of operator . pD

 

5. CONCLUSIONS 

The  plane -port junction of the waveguides of rectangular cross-

section, which are regular in the generalized frame above, has been analyzed via the 
mode-matching technique. 

H E   1N 

A new statement of the problem of mode diffraction on the discontinuity in the 
waveguide has been formulated. This formulation is as follows. The finite-power wave 
is incident upon the waveguide discontinuity. The field of this wave consists of an 
infinite set of modes with any known amplitude distribution. There are just the 
scattering operators to be found. 

As a direct result of this statement of the mode-diffraction problem, the matrix-
operator model in a perfect form of Fresnel formulae for the reflection and 
transmission operators has been obtained. 

It has been found that the fundamental law of energy conservation implies the 
correctness of the derived Fresnel formulae in operator form. Thus, the unsettled 
problem of justification of the matrix model of the mode-matching technique has been 
solved for the considered class of diffraction problems. 

Finally, owing to a new statement of the problem of mode diffraction the matrix-
operator nature of the mode-matching technique has been clarified. 
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