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ABSTRACT: A complete form of the generalized power conservation law for the 
problem of mode diffraction in the lossless multi-port H - ( E -) plane waveguide 
transformer has been obtained. The generalization has been accomplished by the use of 
the second Lorentz lemma in addition to the theorem of complex power. Some new 
equivalent forms of this law have been used to establish the fundamental properties of 
the scattering matrices. Operator matrix forms of the energy-conservation statement in 
the case of abrupt discontinuity are presented. The obtained results are intended for 
application in the analytic-numerical methods based on the modal analysis.  

INTRODUCTION 

Generalization of analytical forms of the power conservation law (PCL) in the 
stationary mode-diffraction theory is stimulated by the continuous development 
of the used mathematical apparatus from the techniques of the circuit theory 
(see, e.g., [1]) to the methods of the operator theory in the Hilbert [2,3] and 
Pontrjagin space [4]. 

The “generalization” of the PCL formulated for the propagating wave of the 
single-mode range is usually understood as extension of its applicability either to 
the multiwave operating regime of a device or to a finite number of “accessible” 
evanescent modes (as, e.g., in [5,6]). This standpoint is widely known [6,7] and 
may be attributed to a stereotyped transfer of such object of the transmission line 
theory as the unitary scattering matrix to the mode-diffraction theory. 

In this paper we put a somewhat different sense into the term “generalized 
power conservation law (GPCL)”. In all papers and books, which are available 
for the authors, the familiar forms of this law are derived solely from the 
complex power theorem. Meanwhile, the second Lorentz theorem for the 
complex power flux from two independent sources is valid in phasor domain as 
well [8]. Disregarding this basic theorem for the considered problems results in 
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that each correct analytical form of the PCL will be merely a certain component 
of the general relation. 

The present paper is aimed at deriving a maximum form of the GPCL (i.e., 
as general form as possible) in terms of the generalized scattering matrix (GSM) 
for the problem of mode diffraction in lossless H - ( E -) plane multi-port 
waveguide transformer of arbitrary geometry (including the problem of wave 
scattering by abrupt discontinuity). 

We will pursue the following logic pattern when presenting the obtained 
results. At first, we introduce a space with an indefinite metric, namely, the 
Pontrjagin space  , so that the all matrix operators (or infinite matrices) under 
consideration are defined in  . Next, the operators of wave reflection and 
transmission are formed into finite operator matrices. These basic operators are 
used to define the GSM of the waveguide transformer and the corresponding 
characteristic operator. Then, the sought-for GPCL is derived from the second 
Lorentz lemma and the complex power theorem having regard to the principle of 
superposition. Next, we prove the relevant operator identities containing the 
used canonical symmetry of the Pontrjagin space. Application of the proven 
identities to the GSM and to the reflection operator (for the problem of mode 
diffraction by abrupt discontinuity) allows us to find new operator forms of the 
GPCL. 
 
 
PROBLEM FORMULATION 

Consider the problem of diffraction of LM - ( LE -) modes in an H - ( E -) 
plane N -port  1,2,...N  waveguide transformer of the standard structure 
[1,3,7]. The region of wave interaction and the regular waveguides transferring 
the energy are homogeneous along the Cartesian coordinate axis oriented 
perpendicular to the H - ( E -) plane. The device is filled with a homogeneous 
lossless medium and all metallic walls are assumed to be perfect electric 
conductors, while the waveguide arms are terminated in matching loads. The 
volume V  of the domain of field determination enclosed by the metal walls of 

the wave interaction region and by reference planes nS , with 1,n N , which 
are placed in the regular waveguides, are supposed to be free of field sources. 
The limit 0V   is treated as the degeneration of the waveguide transformer 
into an abrupt discontinuity. The convention of time dependence is  exp i t , 

and k    with Im 0k   is the wavenumber. 
The electromagnetic field inside this waveguide transformer is completely 

determined by a scalar phasor U  (a component of the field or Hertz vector 
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along the above-mentioned Cartesian coordinate axis), which satisfies the 
Helmholtz equation and homogeneous boundary conditions on the metal walls. 

Let the mode composition of the incident field at each of the N  ports be 
described by an infinite row vector of complex-valued amplitudes 2n b  , with 

1,n N . Then the vector of amplitudes of the specified sources 

 1 2, ,..., Nb b b b  belongs to the Hilbert space  2
Nh   . 

Let nM  be the number of modes above cutoff in the port n . Now, we will 
introduce an orthoprojector associated with this port, viz. 

 

1
; , 1,

n
n

n

M
M

M mq mp pq
p

P m q 


 
    
 

P , 

 
where mn  is the Kronecker delta, and then use it to create an operator matrix of 
projection on all propagating waves existing in the N  ports 
 

 1 2
, ,...,

NM M MdiagP P P P .            (1) 

 
According to this definition, P  represents the operator of finite rank 

 
1

N

n
n

Tr M


 P  (throughout what follows we will assume 0  ). Next, 

the orthoprojector on all evanescent modes is  Q I P , where I  stands for the 
identity operator. The existence of two mutually orthogonal subspaces of vectors 
of amplitudes of the propagating waves and evanescent modes allows us to 
introduce the Pontrjagin space h h  P Q  [4]. The canonical symmetry of 
this space is given by the formulae [9] 
 

1 †2       J Q P I P J J J ,   (2) 
 

where the dagger “ † ” denotes the Hermitian conjugation. 
We will describe the n -th port by the matrix operator of mode reflection 

2 2:n R    and by the unitary operator 
n n nM M Mi U Q P , which will be 

referred to as the portal operator. The matrix operator of mode transmission 
from waveguide p  into waveguide q  will be denoted as 2 2:pq T   . Note 

that we use the standardized operators n R  and pq T  (see, for example, [10,11]). 
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Then the waveguide transformer under consideration can be described using 
the reflection and the portal operator matrices     

 

 1 2, ,..., N
R diagS R R R ,                (3) 

 

 1 2
, ,...,

NM M MdiagU U U U ,    (4) 

 
respectively, and the transmission operator matrix     
 

12 1

21 2

1 2
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N N
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 
 
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 

T T
T T

S

T T




   


.         (5) 

 
Based on the operators Eqs. (3) through (5) let us form the generalized 
(operator) scattering matrix :   S  and the characteristic operator 

:   G  (see, for example [11-13]) after the formulae 

 
   †,R T    S S S G I S U I S .        (6) 

 
For completeness sake, we would like to note that the first (conventional) 

Lorentz lemma yields the familiar properties of symmetry T
R RS S  and 

T
T TS S  (see, for example [2,3]). 

 
 
OPERATOR MATRIX FORM OF THE ENERGY LAW 

Two fundamental relations exist for a scalar field U , which operate with the 
complex power flux. With the terminology of the respective energy laws of 
electromagnetism we have i) the complex power theorem for a single source   
of the field, viz. 
 

2 22( )
S V

UU dS U k U dV
n


  


           (7) 
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and ii) the second Lorentz lemma for two independent sources   and   of the 
field [8] 
 

 2
;

0.
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S

UU dS U U k U U dV
n

U UU U dS
n n
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      (8) 

 
Here the asterisk “ ” is for complex conjugation. The integration in the left-
hand parts of Eqs. (7) and (8) is taken over the ordered union of all the reference 

planes 
1

N

m
m

S S


  and n  stands for the outward normal to this surface. 

By substituting the modal expansion of the field at the reference planes in 
Eqs. (7) and (8) and taking into account the superposition principle, we arrive at 
the following basic relation 

 

   2 2

2 2† 2( )
L V L V

U k U  bG b     (9) 
 

(details of this procedure for the case of two-port waveguide transformer can be 
found in [11]). In the case of no losses this formula yields the hermicity of the 
characteristic operator †G G , which is equivalent, in view of the definitions 
Eqs. (2), (4) and (6), to the equalities 
 

 †Im 2 Im 0   G P SPS SQ ,        (10) 
 

 †Re 2Im   G G Q SQS SP .        (11) 
 

The physical corollary of the formula Eq. (9) in the form of the equality Eq.(10) 
evidently means that the flux of the active power through the source-free and 
lossless closed volume is equal to zero and represents a generalized power 
conservation law expressed in the maximum form through an optimum number 
of operator matrices. 

By equating the sum and difference of Eqs. (10) and (11) we arrive at new 
representations for the characteristic operator, viz. 

 

 † †2 Im 2Im     G I SS SJ J SJS S .  (12) 
 

An important role in the further transformations of the GPCL is played by the 
operator 
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 1
2

i V I SJ ,  

 
which allows reducing the formula Eq. (12) to a compact form, viz. 
 

† † 1
2      I V V J V JV G ,    (13) 

 

† † 1
2

T
      I V V J V JV JG J .   (14) 

 
The formulas Eqs. (10) through (14) are the sought-for complete forms of the 
GCPL for the class of problems under consideration. 
 
 
SOME EQUIVALENT FORMS OF THE GPCL 

The found operator forms of the GPCL Eqs. (10) to (14) can be modified in 
various ways to obtain its new equivalent forms revealing the fundamental 
properties of the scattering operators. 

To that end we will use here two operator identities which can be derived in 
the following way. Let us form a graph space h h h    with elements 

 , h u v ; , hu v , where the operation of summation and the scalar 
product are defined in the natural manner [12]. Then, following paper [9], in the 
graph space we will introduce a canonical symmetry 

 

i
i

 
   

0 J
J

J 0
   

 

and the orthoprojectors  1
2


  P I J . The selected form of the operator J  

provides for the desired form of the indefinite metric, viz. 
 

     †, , , 2 Im  u v u v vJu . 
 

By definition (see, for example, [12]) the graph of the scattering operator S  is a 
subspace S h    with elements  , Su uS ; hu  (here we have taken 
into account that the initial Hilbert space h  has been formed by row vectors). 
The introduced orthoprojectors provide for the necessary canonical 
decomposition of the graph 
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S S S
 
     P P ,   

 
which is determined by its elements as follows 
 

  , :S i h
     P uV uV J u . 

 
Making use of the Pythagorean theorem and the indefinite form for the 
constructed decomposition of the graph S , we can find the sought-for 
identities, viz. 
 

† † †
     I SS V V V V ,        (15) 

 

  † †2 Im     SJ V V V V .         (16) 
 

By combining the relations Eqs. (15) and (16) with the GPCL Eqs. (13) and 
(14) we can obtain new forms of the energy conservation law. One of these is as 
follows 

 

 † †1
2    I SS Q V QV ,           (17) 

 
which describes the measure of deflection of the GSM properties from the 
unitarity. Namely, the greater is the number of propagating modes in the 
waveguide arms, the closer is (in the sense of Eq. (17)) the GSM S  to the 
unitary operator, never reaching this limit. Two other found forms of the GPCL, 
viz. 
 

 

†

†

Im ;

Im
 

 

  


 

S P V PV
SJ P V PV

    (18) 

 
determine the measure of deviation of the GSM from the self-adjoint operator. 
Specifically, the operators S  and S J  are quasi-Hermitian, since their imaginary 
components are finite rank operators [13]. This means, in particular, that every 
accumulation point of the spectrum   S  belongs to the spectrum of the real 

component of the GSM, whereas every nonreal point of   S  represents an 
eigenvalue of a finite multiplicity [13]. 
 
 
SPECIAL CASE: AN ABRUPT DISCONTINUITY 

Consider a specific case of 0G  or in the expanded form 
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 † 2 Im 0  Q SQS SP ,    (19) 
 

which corresponds to equating to zero of the right-hand part of the formula 
Eq. (9). This situation is possible both for the case of an abrupt discontinuity, 
i.e., 0V   (note that when proceeding to the limit 0V   the key role is played 
by the “condition at the sharp edge”), and with 0V   for certain frequencies 
(as, for example, in the case of resonances for the “trapped modes” in the wave 
interaction region). As follows from the equalities Eqs. (13) and (14), the 
operator V  is a unitary one for either of these two cases, whereas the operator 

V  will be J -unitary, viz. 
 

† †

† †

;
.

   

   

  


 

V V V V I
V JV V JV J

     (20) 

 
In addition, from Eq. (12) follows 
 

   †1 Im
2

 I SS SJ ,    (21) 

 
i.e., the expression appearing in parenthesis in the left-hand part of Eq. (21) 
represents a quasi-Hermitian operator. Also note that the involution property 

2 S I  for both these cases follows from the theorem of oscillating power (see, 
for example, paper [11]). 

Here we will consider the first special case where the surface S  in the 
remaining integrals of the theorems Eqs. (7) and (8) degenerates into a single 
reference plane which corresponds to step-like variation in the cross-section 
or/and in the curvature of the waveguide, waveguide bifurcation, etc. 

The found forms of the GPCL for 3N   are limited to the formulas 
Eqs. (20) and (21) presented above. However, the circle of the obtained results is 
essentially wider for the practically important case of 2N   owing to particular 
properties of the scattering matrices. Namely, in this case the properties 
 

    2
R R T  I S I S S  and 0R T T R S S S S  

 
follows from the theorem of oscillating power and the first Lorentz lemma. With 
account of these relations the equality 
 

   † †
T R R T  S U I S I S US ,  
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which arise from the second Lorentz lemma, goes over into a corollary of the 
complex power theorem 
 

   † †
R R T T  I S U I S S US          (22) 

 
and vice versa (however, this is not correct for 2N  ). So, the formula Eq. (22) 
can be accepted as the basic power relation for the case 0V   and 2N  . 

By separating the real and imaginary components of the operator equality 
Eq. (22) and proceeding similar as in deriving the formula Eq. (12), we can 
obtain the sought-for GPCL in equivalent forms 

 

† †1
2 T T  I W W S S ,           (23) 

 

† †1
2 T T  J W JW S JS ,            (24) 

 

where  1
2 Ri W I S J . The first equality yields immediately the estimates 

2T S  and 1 W . Next, by combining the equalities Eqs. (23) and (24) 
with the identities 
 

† † †
R R      I S S W W W W , 

 

  † †2 Im R     S J W W W W , 
 

we can find, in particular, the following equivalent forms of the GPCL 
 

 † † † † †1 1 1 ,
2 2 2R R T T T T         I S S P W PW S QS Q W QW S PS   (25) 

 

† † † †1 1Im .
2 2R T T T T         S P W PW S PS Q W QW S QS           (26) 

 
The latter allows concluding that the reflection operator for a two-port abrupt 
discontinuity is a quasi-Hermitian one. 

Note that with 2N   the operator matrices of reflection RS  and 
transmission TS  are “diagonal”. Therefore, the relations completely analogous 
to the equalities Eqs. (22) through (26) can also be constructed for individual 
operators n R  and pq T  (see [10,11,14,15]) composing these matrices. 
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DISCUSSION AND CONCLUSIONS 

Thus, using jointly the complex Poynting’s theorem and the second Lorentz 
lemma we have derived a generalized form of the power conservation law given 
by the operator equalities Eqs. (10) and (11). The contribution of each of these 
theorem to the GPCL is quite clear. The theorem of complex power is valid for 
the field from a single source. For this reason its direct corollary will be operator 
relations occupying the main diagonal of the resultant operator matrix, whereas 
all off-diagonal operator blocks arise from the second Lorentz theorem. Since 
the list of the fundamental laws of electromagnetics concerning the complex 
power flux is exhausted by these two theorems, it can be stated the derived 
forms of the GPCL Eqs. (10) through (14) are maximum complete in this sense 
for the circle of problems under consideration. 

As can be shown, the equality Eq. (10) contains the familiar particular forms 
of the PCL. 

Let us introduce the operator 0 S PSP , which represents a trivial 
completion of the classical (finite) scattering matrix to an infinite matrix by 
zeros. By multiplying the right- and left-hand parts of the relation Eq. (10) by 
the orthoprojector P , we arrive at the widely used in practice PCL for 
propagating waves, viz. † †

0 0 0 0 S S S S P  or in the expanded form 
 

(0)1 (0)1

; , , 1,
p qM MN

p p pq pq
ms ns ms ns mn p

s q p s
R R T T m n M p N 

  

       .  (27) 

 
This result means, in particular, that the operator 0S  is partially isometric in h . 
Next, extracting the diagonal operator blocks from the operator matrix Eq. (10) 
we obtain 

 

(0)1 (0)1

, ,
0, ,

2 Im , ,

p q mn pM MN
p p pq pq

ms ns ms ns p p
s q p s p

mn p

m n M
R R T T m M n M

R n M m

 

  

 
   
  

  


,  (28) 

 
where 1,p N . This formula represents the well-known generalization of 
relation Eq. (27) to evanescent modes (the widely used particular cases of this 
equality can be found, for example, in [3]). In the case of abrupt discontinuities 
the formula Eq. (28) is complemented with one more similar relation. Namely, 
extracting the diagonal operator blocks from Eq. (19), we can obtain the equality 
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1 1

2Im , ,

0, ,

, ,
p q

p
mn p

N
p pp p pq pq

ms ns ms ns
s M q p s M

mn p

R n M m

m M n M
R R T T

m n M

 
 

    

  


    

 



   ,  (29) 

 

where 1,p N . Note that the formulae Eqs. (28) and (29), as well as their 
combinations can be treated as versions of the canonical “optical theorem” for 
waveguide systems. Then the complete formula Eq. (10) represents the 
generalized optical theorem for lossless and reciprocal waveguiding structures in 
the operator form. 

Construction of the equivalent forms Eqs. (17) and (18) of the GPCL allow 
determining important properties of the GSM, including characteristic features 
of its complete spectrum. As follows from the obtained results, the GSM 
represents quasi-Hermitian and nonunitary operator with the rank of its 
nonhermicity being equal to the total number of propagating waves in the energy 
feeding waveguides. The whole essential spectrum of the GSM lies on the real 
axis, whereas each nonreal point of its spectrum represents an eigenvalue of a 
finite multiplicity. 

In the case of degeneration of the waveguide transformer into a N -port 
abrupt discontinuity the complete forms of the GPCL appear as equalities 
Eqs. (20) and (21). For the practically important case of a two-port transformer 
the sought-for power relation assumes the form of the formulae Eqs. (22) 
through (24). Its equivalent forms Eqs. (23) and (26) allow us to estimate the 
norm of the transmission operator 2T S  and to prove that the reflection 
operator is a quasi-Hermitian one. 

In addition, we would like to note that all the obtained formulae are 
invariant with respect to replacing the GSM with the operator matrix 

R T  S S S , which could be also demanded by engineering practice. 
The remarkable simplicity of the formulae derived for the GPCL in terms of 

operator matrices is governed evidently by the accepted idealizations whose 
collection though is standard for the modern electrodynamic analysis of 
centimeter and millimeter wave transformers. 

The use of any suitable form of the power conservation law from the 
fourteen found formulae Eqs. (10) through (14) and (17) to (25) allows 
validating the law simultaneously for all the waveguide modes allowed for in the 
field representation through the standard procedure in the practice of computer 
simulations of microwave devices. 
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